Python 迭代器+生成器+装饰器
2021/6/25 17:56:47
本文主要是介绍Python 迭代器+生成器+装饰器,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
一、迭代器
1、迭代器协议
- 迭代器协议是指:对象必须提供一个next方法,执行该方法要么返回迭代中的下一项,要么就引起一个stoplteration异常,以终止迭代(只能 往后走,不能往前退)
- 协议是一种约定,可迭代对象实现了迭代器协议,python的内部工具(如for循环,sum,min,max函数等)使用迭代器协议访问对象
2、可迭代对象
可迭代对象泛指一类对象,不是指的每一种对象,确切的说满足以下的条件的对象可以成为可迭代对象:
- 对象实现了__iter__方法
- __iter__方法返回了一个迭代器对象
我们比较容易理解的可迭代对象,比如说可以用for语句去遍历,实际for语句的内部实现应该就是首先调用对象的__iter__方法,获取一个迭代器对象,接着不停的调用迭代器对象的__next__方法,循环遍历取值。
3、迭代器对象(迭代器)
迭代器协议包括这些条件:
- 对象实现了__next__方法
- __next__方法返回了某个数值(当然一般情况下,我们需要的是返回这个对象的特定的数字,并且按照一定的顺序进行依次返回)
- __next__方法需要在值取完的时候,抛出StopIteration的错误信息。
能够迭代的类型:list tuple string set dict bytes迭代器有两个基本的方法:iter() 和 next()
- iter返回迭代器对象本身。这用于for 和in语句。
- next方法返回迭代器中的下一个值。如果没有更多的项目要返回,那么它应该引发StopIteration异常。
创建一个返回数字的迭代器,初始值为 1,逐步递增 1:
class MyNumbers: def __iter__(self): self.a = 1 return self def __next__(self): x = self.a self.a += 1 return x myclass = MyNumbers() myiter = iter(myclass) print(next(myiter)) print(next(myiter)) print(next(myiter)) print(next(myiter)) print(next(myiter))
输出:
1 2 3 4 5
二、生成器
可以理解为一种数据类型,这种数据类型自动实现了迭代器协议(其他的数据类型需要调用自己的内置的__iter__方法),所以生成器就是可迭代对象
1、生成器函数
常规函数的定义,但是,使用yield语句而不是return语句返回结果。yield语句语句一次返回一个结果,在每个结果中间,挂起函数的状态,以便下次从它离开的地方继续执行
2、生成器表达式
类似于列表推导,但是,生成器返回按需产生结果的一个对象,而不是一次构建一个结果列表
3、生成器的特点
生成器最大的特点是:边迭代 边输出
Python使用生成器对延迟操作提供了支持。所谓延迟操作,是指在需要的时候才产生结果,而不是立即产生结果。这也是生产层器的主要好处。
这里举一个例子来说明生成器的优点
输出斐波那契数列前 N 个数
def fab(max): n, a, b = 0, 0, 1 L = [] while n < max: L.append(b) a, b = b, a + b n = n + 1 return L for n in fab(5): print n
该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List来保存中间结果,而是通过 iterable 对象来迭代。
class Fab(object): def __init__(self, max): self.max = max self.n, self.a, self.b = 0, 0, 1 def __iter__(self): return self def next(self): if self.n < self.max: r = self.b self.a, self.b = self.b, self.a + self.b self.n = self.n + 1 return r raise StopIteration() for n in Fab(5): print n
Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数。
然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:
def fab(max): n, a, b = 0, 0, 1 while n < max: yield b # 使用 yield # print b a, b = b, a + b n = n + 1 for n in fab(5): print n
简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(i) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。
一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。
yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。
这里记录一个引出本篇博客的问题:
Scrapy中yield的理解
https://www.oschina.net/question/2254016_238539
三、装饰器
这篇关于Python 迭代器+生成器+装饰器的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-24Python编程入门指南
- 2024-12-24Python编程基础入门
- 2024-12-24Python编程基础:变量与数据类型
- 2024-12-23使用python部署一个usdt合约,部署自己的usdt稳定币
- 2024-12-20Python编程入门指南
- 2024-12-20Python编程基础与进阶
- 2024-12-19Python基础编程教程
- 2024-12-19python 文件的后缀名是什么 怎么运行一个python文件?-icode9专业技术文章分享
- 2024-12-19使用python 把docx转为pdf文件有哪些方法?-icode9专业技术文章分享
- 2024-12-19python怎么更换换pip的源镜像?-icode9专业技术文章分享