机器学习——实验三 朴素贝叶斯算法及应用
2021/6/27 20:50:22
本文主要是介绍机器学习——实验三 朴素贝叶斯算法及应用,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
实验三 朴素贝叶斯算法及应用
博客班级 | https://edu.cnblogs.com/campus/ahgc/machinelearning |
---|---|
作业要求 | https://edu.cnblogs.com/campus/ahgc/machinelearning/homework/12085 |
作业目标 | <1.理解朴素贝叶斯算法原理,掌握朴素贝叶斯算法框架;2.掌握常见的高斯模型,多项式模型和伯努利模型;3.能根据不同的数据类型,选择不同的概率模型实现朴素贝叶斯算法;4.针对特定应用场景及数据,能应用朴素贝叶斯解决实际问题。> |
学号 | <3180701121> |
- 实验三 朴素贝叶斯算法及应用
- 一.实验目的
- 二.实验内容要求
- 三.报告要求
- 四.实验内容
- 五.实验小结
一.实验目的
1.理解朴素贝叶斯算法原理,掌握朴素贝叶斯算法框架;
2.掌握常见的高斯模型,多项式模型和伯努利模型;
3.能根据不同的数据类型,选择不同的概率模型实现朴素贝叶斯算法;
4.针对特定应用场景及数据,能应用朴素贝叶斯解决实际问题。
二.实验内容要求
-
实现高斯朴素贝叶斯算法。
-
熟悉sklearn库中的朴素贝叶斯算法;
-
针对iris数据集,应用sklearn的朴素贝叶斯算法进行类别预测。
-
针对iris数据集,利用自编朴素贝叶斯算法进行类别预测。
三.报告要求
-
对照实验内容,撰写实验过程、算法及测试结果;
-
代码规范化:命名规则、注释;
-
分析核心算法的复杂度;
-
查阅文献,讨论K近邻的优缺点;
-
举例说明K近邻的应用场景。
四.实验内容
朴素贝叶斯
#导入包 import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from collections import Counter import math
# data def create_data(): iris = load_iris() df = pd.DataFrame(iris.data, columns=iris.feature_names) df['label'] = iris.target df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label'] data = np.array(df.iloc[:100, :]) print(data) return data[:,:-1], data[:,-1]
X, y = create_data() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
截取部分数据:
#测试 X_test[0], y_test[0]
结果:
(array([5.6, 3. , 4.5, 1.5]), 1.0)
高斯贝叶斯
#GaussianNB 高斯朴素贝叶斯,特征的可能性被假设为高斯 class NaiveBayes: def __init__(self): self.model = None # 数学期望 @staticmethod def mean(X): return sum(X) / float(len(X)) # 标准差(方差) def stdev(self, X): avg = self.mean(X) return math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X))) # 概率密度函数 def gaussian_probability(self, x, mean, stdev): exponent = math.exp(-(math.pow(x - mean, 2) /(2 * math.pow(stdev, 2)))) return (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent # 处理X_train def summarize(self, train_data): summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)] return summaries # 分类别求出数学期望和标准差 def fit(self, X, y): labels = list(set(y)) data = {label: [] for label in labels} for f, label in zip(X, y): data[label].append(f) self.model = {label: self.summarize(value)for label, value in data.items()} return 'gaussianNB train done!' # 计算概率 def calculate_probabilities(self, input_data): # summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]} # input_data:[1.1, 2.2] probabilities = {} for label, value in self.model.items(): probabilities[label] = 1 for i in range(len(value)): mean, stdev = value[i] probabilities[label] *= self.gaussian_probability(input_data[i], mean, stdev) return probabilities # 类别 def predict(self, X_test): # {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26} label = sorted(self.calculate_probabilities(X_test).items(),key=lambda x: x[-1])[-1][0] return label def score(self, X_test, y_test): right = 0 for X, y in zip(X_test, y_test): label = self.predict(X) if label == y: right += 1 return right / float(len(X_test))
model = NaiveBayes()#生成一个算法对象 model.fit(X_train, y_train)#将训练数据代入算法中
结果:'gaussianNB train done!'
print(model.predict([4.4, 3.2, 1.3, 0.2]))
结果:0.0
scikit-learn实例
#生成scikit-learn结果与上面手写函数的结果对比 from sklearn.naive_bayes import GaussianNB #导入模型
clf = GaussianNB() clf.fit(X_train, y_train)#训练数据
结果:GaussianNB(priors=None, var_smoothing=1e-09)
clf.score(X_test, y_test)
结果:1.0
clf.predict([[4.4, 3.2, 1.3, 0.2]])
结果:array([0.])
五.实验小结
下面是我在onenote上的笔记总结:
这篇关于机器学习——实验三 朴素贝叶斯算法及应用的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-26【机器学习(三)】分类和回归任务-随机森林(Random Forest,RF)算法-Sentosa_DSML社区版
- 2024-11-18机器学习与数据分析的区别
- 2024-10-28机器学习资料入门指南
- 2024-10-25机器学习开发的几大威胁及解决之道
- 2024-10-24以下是五个必备的MLOps (机器学习运维)工具,帮助提升你的生产效率 ??
- 2024-10-15如何选择最佳的机器学习部署策略:云 vs. 边缘
- 2024-10-12从软件工程师转行成为机器学习工程师
- 2024-09-262024年机器学习路线图:精通之路步步为营指南
- 2024-09-13机器学习教程:初学者指南
- 2024-08-07从入门到精通:全面解析机器学习基础与实践