实验三 朴素贝叶斯算法及应用
2021/6/27 22:20:16
本文主要是介绍实验三 朴素贝叶斯算法及应用,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
博客班级 | AHPU-机器学习-计算机18级 |
---|---|
实验要求 | https://edu.cnblogs.com/campus/ahgc/machinelearning/homework/12085 |
学号 | 3180701232 |
- 一.实验目的
- 二.实验内容
- 三.实验报告要求
- 四.实验结果
- 源代码
- 五.实验小结
一.实验目的
1.理解朴素贝叶斯算法原理,掌握朴素贝叶斯算法框架;
2.掌握常见的高斯模型,多项式模型和伯努利模型;
3.能根据不同的数据类型,选择不同的概率模型实现朴素贝叶斯算法;
4.针对特定应用场景及数据,能应用朴素贝叶斯解决实际问题。
二.实验内容
1.实现高斯朴素贝叶斯算法。
2.熟悉sklearn库中的朴素贝叶斯算法;
3.针对iris数据集,应用sklearn的朴素贝叶斯算法进行类别预测。
4.针对iris数据集,利用自编朴素贝叶斯算法进行类别预测。
三.实验报告要求
1.对照实验内容,撰写实验过程、算法及测试结果;
2.代码规范化:命名规则、注释;
3.分析核心算法的复杂度;
4.查阅文献,讨论K近邻的优缺点;
5.举例说明K近邻的应用场景。
四.实验结果
源代码
朴素贝叶斯.
#导入包 import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from collections import Counter import math
2.
# data def create_data(): iris = load_iris() df = pd.DataFrame(iris.data, columns=iris.feature_names) df['label'] = iris.target df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label'] data = np.array(df.iloc[:100, :]) print(data) return data[:,:-1], data[:,-1]
3.
X, y = create_data() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
4.
部分截图 ![](https://www.www.zyiz.net/i/l/?n=20&i=blog/2205429/202106/2205429-20210627205942735-496119680.png)
5.
#测试 X_test[0], y_test[0]
6.
结果: (array([5.6, 3. , 4.5, 1.5]), 1.0) 高斯贝叶斯
7.
#GaussianNB 高斯朴素贝叶斯,特征的可能性被假设为高斯 class NaiveBayes: def __init__(self): self.model = None # 数学期望 @staticmethod def mean(X): return sum(X) / float(len(X)) # 标准差(方差) def stdev(self, X): avg = self.mean(X) return math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X))) # 概率密度函数 def gaussian_probability(self, x, mean, stdev): exponent = math.exp(-(math.pow(x - mean, 2) /(2 * math.pow(stdev, 2)))) return (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent # 处理X_train def summarize(self, train_data): summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)] return summaries # 分类别求出数学期望和标准差 def fit(self, X, y): labels = list(set(y)) data = {label: [] for label in labels} for f, label in zip(X, y): data[label].append(f) self.model = {label: self.summarize(value)for label, value in data.items()} return 'gaussianNB train done!' # 计算概率 def calculate_probabilities(self, input_data): # summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]} # input_data:[1.1, 2.2] probabilities = {} for label, value in self.model.items(): probabilities[label] = 1 for i in range(len(value)): mean, stdev = value[i] probabilities[label] *= self.gaussian_probability(input_data[i], mean, stdev) return probabilities # 类别 def predict(self, X_test): # {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26} label = sorted(self.calculate_probabilities(X_test).items(),key=lambda x: x[-1])[-1][0] return label def score(self, X_test, y_test): right = 0 for X, y in zip(X_test, y_test): label = self.predict(X) if label == y: right += 1 return right / float(len(X_test))
8.
model = NaiveBayes()#生成一个算法对象 model.fit(X_train, y_train)#将训练数据代入算法中
9.
结果:'gaussianNB train done!'
10.
print(model.predict([4.4, 3.2, 1.3, 0.2])) 结果:0.0 scikit-learn实例
11.
#生成scikit-learn结果与上面手写函数的结果对比 from sklearn.naive_bayes import GaussianNB #导入模型 clf = GaussianNB() clf.fit(X_train, y_train)#训练数据
12.
结果:GaussianNB(priors=None, var_smoothing=1e-09)
13.
clf.score(X_test, y_test)
14.
结果:1.0
15.
clf.predict([[4.4, 3.2, 1.3, 0.2]])
16.
结果:array([0.])
五.实验小结
通过本次实验我理解了朴素贝叶斯算法原理,掌握了朴素贝叶斯算法框架,掌握了常见的高斯模型,多项式模型和伯努利模型,能根据不同的数据类型,选择不同的概率模型实现朴素贝叶斯算法,针对特定应用场景及数据,能应用朴素贝叶斯解决实际问题。
这篇关于实验三 朴素贝叶斯算法及应用的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-23Springboot应用的多环境打包入门
- 2024-11-23Springboot应用的生产发布入门教程
- 2024-11-23Python编程入门指南
- 2024-11-23Java创业入门:从零开始的编程之旅
- 2024-11-23Java创业入门:新手必读的Java编程与创业指南
- 2024-11-23Java对接阿里云智能语音服务入门详解
- 2024-11-23Java对接阿里云智能语音服务入门教程
- 2024-11-23JAVA对接阿里云智能语音服务入门教程
- 2024-11-23Java副业入门:初学者的简单教程
- 2024-11-23JAVA副业入门:初学者的实战指南