实验三 朴素贝叶斯算法及应用

2021/6/28 17:20:30

本文主要是介绍实验三 朴素贝叶斯算法及应用,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

班级 计算机183
实验内容 朴素贝叶斯算法及应用
姓名 程王宇
学号 3180701339

【实验目的】

1、理解朴素贝叶斯算法原理,掌握朴素贝叶斯算法框架;
2、掌握常见的高斯模型,多项式模型和伯努利模型;
3、能根据不同的数据类型,选择不同的概率模型实现朴素贝叶斯算法;
4、针对特定应用场景及数据,能应用朴素贝叶斯解决实际问题。

【实验内容】

1、实现高斯朴素贝叶斯算法。
2、熟悉sklearn库中的朴素贝叶斯算法;
3、针对iris数据集,应用sklearn的朴素贝叶斯算法进行类别预测。
4、针对iris数据集,利用自编朴素贝叶斯算法进行类别预测。

【实验报告要求】

1、对照实验内容,撰写实验过程、算法及测试结果;
2、代码规范化:命名规则、注释;
3、分析核心算法的复杂度;
4、查阅文献,讨论各种朴素贝叶斯算法的应用场景;
5、讨论朴素贝叶斯算法的优缺点。

实验代码与结果

1、

#导入包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter
import math

2、

# data
def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    data = np.array(df.iloc[:100, :])
    print(data)
    return data[:,:-1], data[:,-1]

3、

X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

4、

#测试
X_test[0], y_test[0]

5、

(array([5.6, 3. , 4.5, 1.5]), 1.0)
"""

"""
#GaussianNB 高斯朴素贝叶斯,特征的可能性被假设为高斯
class NaiveBayes:
    def __init__(self):
        self.model = None
        
    # 数学期望
    @staticmethod
    def mean(X):
        return sum(X) / float(len(X))
    
    # 标准差(方差)
    def stdev(self, X):
        avg = self.mean(X)
        return math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X)))
    
    # 概率密度函数
    def gaussian_probability(self, x, mean, stdev):
        exponent = math.exp(-(math.pow(x - mean, 2) /(2 * math.pow(stdev, 2))))
        return (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent

    # 处理X_train
    def summarize(self, train_data):
        summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]
        return summaries
    
    # 分类别求出数学期望和标准差
    def fit(self, X, y):
        labels = list(set(y))
        data = {label: [] for label in labels}
        for f, label in zip(X, y):
            data[label].append(f)
        self.model = {label: self.summarize(value)for label, value in data.items()}
        return 'gaussianNB train done!'
    
    # 计算概率
    def calculate_probabilities(self, input_data):
        # summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]}
        # input_data:[1.1, 2.2]
        probabilities = {}
        for label, value in self.model.items():
            probabilities[label] = 1
            for i in range(len(value)):
                mean, stdev = value[i]
                probabilities[label] *= self.gaussian_probability(input_data[i], mean, stdev)
        return probabilities
    
    # 类别
    def predict(self, X_test):
        # {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26}
        label = sorted(self.calculate_probabilities(X_test).items(),key=lambda x: x[-1])[-1][0]
        return label
    
    def score(self, X_test, y_test):
        right = 0
        for X, y in zip(X_test, y_test):
            label = self.predict(X)
            if label == y:
                right += 1
                
        return right / float(len(X_test))

6、

model = NaiveBayes()#生成一个算法对象
model.fit(X_train, y_train)#将训练数据代入算法中

7、

print(model.predict([4.4, 3.2, 1.3, 0.2]))

8、

model.score(X_test, y_test)

9、

#生成scikit-learn结果与上面手写函数的结果对比
from sklearn.naive_bayes import GaussianNB  #导入模型

10、

clf = GaussianNB(;)
clf.fit(X_train, y_train)#训练数据

11、

clf.score(X_test, y_test)

结果

1、

2、

3、

4、

5、

6、、

7、

8、

9、

10、

11、

12、

13、

14、

实验小结

朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM)。和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier 或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。

朴素贝叶斯的优缺点

优点:效率较高;对缺失数据不太敏感;能处理多分类任务。
缺点:要求数据的相关性很低,各个数据之间的依赖性要保持在很低的水平上



这篇关于实验三 朴素贝叶斯算法及应用的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程