实验三 朴素贝叶斯算法及应用

2021/6/28 17:20:39

本文主要是介绍实验三 朴素贝叶斯算法及应用,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

一:作业信息

博客班级 https://edu.cnblogs.com/campus/ahgc/AHPU-se-JSJ18
作业要求 https://edu.cnblogs.com/campus/ahgc/machinelearning/homework/12085
作业目标 朴素贝叶斯算法及应用
学号 3180701325

【实验目的】

理解朴素贝叶斯算法原理,掌握朴素贝叶斯算法框架;
掌握常见的高斯模型,多项式模型和伯努利模型;
能根据不同的数据类型,选择不同的概率模型实现朴素贝叶斯算法;
针对特定应用场景及数据,能应用朴素贝叶斯解决实际问题。
【实验内容】

实现高斯朴素贝叶斯算法。
熟悉sklearn库中的朴素贝叶斯算法;
针对iris数据集,应用sklearn的朴素贝叶斯算法进行类别预测。
针对iris数据集,利用自编朴素贝叶斯算法进行类别预测。
【实验报告要求】

对照实验内容,撰写实验过程、算法及测试结果;
代码规范化:命名规则、注释;
分析核心算法的复杂度;
查阅文献,讨论各种朴素贝叶斯算法的应用场景;
讨论朴素贝叶斯算法的优缺点。
五:实验过程
In[1]:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

from collections import Counter
import math
In[2]:

def create_data():
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['label'] = iris.target
df.columns = [
'sepal length', 'sepal width', 'petal length', 'petal width', 'label'
]
data = np.array(df.iloc[:100, :])

return data[:, :-1], data[:, -1]

In[3]:

X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
In[4]:

X_test[0], y_test[0]
Out[4]:

In[5]:

class NaiveBayes:
def init(self):
self.model = None

# 数学期望
@staticmethod
def mean(X):
    return sum(X) / float(len(X))

# 标准差(方差)
def stdev(self, X):
    avg = self.mean(X)
    return math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X)))

# 概率密度函数
def gaussian_probability(self, x, mean, stdev):
    exponent = math.exp(-(math.pow(x - mean, 2) /
                          (2 * math.pow(stdev, 2))))
    return (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent

# 处理X_train
def summarize(self, train_data):
    summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]
    return summaries

# 分类别求出数学期望和标准差
def fit(self, X, y):
    labels = list(set(y))
    data = {label: [] for label in labels}
    for f, label in zip(X, y):
        data[label].append(f)
    self.model = {
        label: self.summarize(value)
        for label, value in data.items()
    }
    return 'gaussianNB train done!'

# 计算概率
def calculate_probabilities(self, input_data):
    # summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]}
    # input_data:[1.1, 2.2]
    probabilities = {}
    for label, value in self.model.items():
        probabilities[label] = 1
        for i in range(len(value)):
            mean, stdev = value[i]
            probabilities[label] *= self.gaussian_probability(
                input_data[i], mean, stdev)
    return probabilities

# 类别
def predict(self, X_test):
    # {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26}
    label = sorted(
        self.calculate_probabilities(X_test).items(),
        key=lambda x: x[-1])[-1][0]
    return label

def score(self, X_test, y_test):
    right = 0
    for X, y in zip(X_test, y_test):
        label = self.predict(X)
        if label == y:
            right += 1
    return right / float(len(X_test))

In[6]:

model = NaiveBayes()
In[7]:

model.fit(X_train, y_train)
Out[7]:

In[8]:

print(model.predict([4.4, 3.2, 1.3, 0.2]))
In[9]:

model.score(X_test, y_test)
Out[9]:

In[10]:

from sklearn.naive_bayes import GaussianNB
In[11]:

clf = GaussianNB()
clf.fit(X_train, y_train)
Out[11]:

In[12]:

clf.score(X_test, y_test)
Out[12]:

In[13]:

clf.predict([[4.4, 3.2, 1.3, 0.2]])
Out[13]:

In[14]:

from sklearn.naive_bayes import BernoulliNB, MultinomialNB # 伯努利模型和多项式模型
实验结果



这篇关于实验三 朴素贝叶斯算法及应用的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程