【数据分析从入门到“入坑“系列】利用Python学习数据分析-Numpy中的索引

2021/7/1 1:20:44

本文主要是介绍【数据分析从入门到“入坑“系列】利用Python学习数据分析-Numpy中的索引,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

基本的索引和切片

NumPy数组的索引是一个内容丰富的主题,因为选取数据子集或单个元素的方式有很多。一维数组很简单。从表面上看,它们跟Python列表的功能差不多:

In [60]: arr = np.arange(10)
​
In [61]: arr
Out[61]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
​
In [62]: arr[5]
Out[62]: 5
​
In [63]: arr[5:8]
Out[63]: array([5, 6, 7])
​
In [64]: arr[5:8] = 12
​
In [65]: arr
Out[65]: array([ 0,  1,  2,  3,  4, 12, 12, 12,  8,  9])

如上所示,当你将一个标量值赋值给一个切片时(如arr[5:8]=12),该值会自动传播(也就说后面将会讲到的“广播”)到整个选区。跟列表最重要的区别在于,数组切片是原始数组的视图。这意味着数据不会被复制,视图上的任何修改都会直接反映到源数组上。

作为例子,先创建一个arr的切片:

In [66]: arr_slice = arr[5:8]
​
In [67]: arr_slice
Out[67]: array([12, 12, 12])

现在,当我修稿arr_slice中的值,变动也会体现在原始数组arr中:

In [68]: arr_slice[1] = 12345
​
In [69]: arr
Out[69]: array([    0,     1,     2,     3,     4,    12, 12345,    12,     8,   
  9])

切片[ : ]会给数组中的所有值赋值:

In [70]: arr_slice[:] = 64
​
In [71]: arr
Out[71]: array([ 0,  1,  2,  3,  4, 64, 64, 64,  8,  9])

如果你刚开始接触NumPy,可能会对此感到惊讶(尤其是当你曾经用过其他热衷于复制数组数据的编程语言)。由于NumPy的设计目的是处理大数据,所以你可以想象一下,假如NumPy坚持要将数据复制来复制去的话会产生何等的性能和内存问题。

注意:如果你想要得到的是ndarray切片的一份副本而非视图,就需要明确地进行复制操作,例如arr[5:8].copy()

对于高维度数组,能做的事情更多。在一个二维数组中,各索引位置上的元素不再是标量而是一维数组:

In [72]: arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
​
In [73]: arr2d[2]
Out[73]: array([7, 8, 9])

因此,可以对各个元素进行递归访问,但这样需要做的事情有点多。你可以传入一个以逗号隔开的索引列表来选取单个元素。也就是说,下面两种方式是等价的:

In [74]: arr2d[0][2]
Out[74]: 3
​
In [75]: arr2d[0, 2]
Out[75]: 3

图4-1说明了二维数组的索引方式。轴0作为行,轴1作为列。

在多维数组中,如果省略了后面的索引,则返回对象会是一个维度低一点的ndarray(它含有高一级维度上的所有数据)。因此,在2×2×3数组arr3d中:

In [76]: arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
​
In [77]: arr3d
Out[77]: 
array([[[ 1,  2,  3],
        [ 4,  5,  6]],
       [[ 7,  8,  9],
        [10, 11, 12]]])

arr3d[0]是一个2×3数组:

In [78]: arr3d[0]
Out[78]: 
array([[1, 2, 3],
       [4, 5, 6]])

标量值和数组都可以被赋值给arr3d[0]:

In [79]: old_values = arr3d[0].copy()
​
In [80]: arr3d[0] = 42
​
In [81]: arr3d
Out[81]: 
array([[[42, 42, 42],
        [42, 42, 42]],
       [[ 7,  8,  9],
        [10, 11, 12]]])
​
In [82]: arr3d[0] = old_values
​
In [83]: arr3d
Out[83]: 
array([[[ 1,  2,  3],
        [ 4,  5,  6]],
       [[ 7,  8,  9],
        [10, 11, 12]]])

相似的,arr3d[1,0]可以访问索引以(1,0)开头的那些值(以一维数组的形式返回):

In [84]: arr3d[1, 0]
Out[84]: array([7, 8, 9])

虽然是用两步进行索引的,表达式是相同的:

In [85]: x = arr3d[1]
​
In [86]: x
Out[86]: 
array([[ 7,  8,  9],
       [10, 11, 12]])
​
In [87]: x[0]
Out[87]: array([7, 8, 9])

注意,在上面所有这些选取数组子集的例子中,返回的数组都是视图。

切片索引

ndarray的切片语法跟Python列表这样的一维对象差不多:

In [88]: arr
Out[88]: array([ 0,  1,  2,  3,  4, 64, 64, 64,  8,  9])
​
In [89]: arr[1:6]
Out[89]: array([ 1,  2,  3,  4, 64])

对于之前的二维数组arr2d,其切片方式稍显不同:

In [90]: arr2d
Out[90]: 
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])
​
In [91]: arr2d[:2]
Out[91]: 
array([[1, 2, 3],
       [4, 5, 6]])

可以看出,它是沿着第0轴(即第一个轴)切片的。也就是说,切片是沿着一个轴向选取元素的。表达式arr2d[:2]可以被认为是“选取arr2d的前两行”。

你可以一次传入多个切片,就像传入多个索引那样:

In [92]: arr2d[:2, 1:]
Out[92]: 
array([[2, 3],
       [5, 6]])

像这样进行切片时,只能得到相同维数的数组视图。通过将整数索引和切片混合,可以得到低维度的切片。

例如,我可以选取第二行的前两列:

In [93]: arr2d[1, :2]
Out[93]: array([4, 5])

相似的,还可以选择第三列的前两行:

In [94]: arr2d[:2, 2]
Out[94]: array([3, 6])

图4-2对此进行了说明。注意,“只有冒号”表示选取整个轴,因此你可以像下面这样只对高维轴进行切片:

In [95]: arr2d[:, :1]
Out[95]: 
array([[1],
       [4],
       [7]])

自然,对切片表达式的赋值操作也会被扩散到整个选区:

In [96]: arr2d[:2, 1:] = 0
​
In [97]: arr2d
Out[97]: 
array([[1, 0, 0],
       [4, 0, 0],
       [7, 8, 9]])

布尔型索引

来看这样一个例子,假设我们有一个用于存储数据的数组以及一个存储姓名的数组(含有重复项)。在这里,我将使用numpy.random中的randn函数生成一些正态分布的随机数据:

In [98]: names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
​
In [99]: data = np.random.randn(7, 4)
​
In [100]: names
Out[100]: 
array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'],
      dtype='<U4')
​
In [101]: data
Out[101]: 
array([[ 0.0929,  0.2817,  0.769 ,  1.2464],
       [ 1.0072, -1.2962,  0.275 ,  0.2289],
       [ 1.3529,  0.8864, -2.0016, -0.3718],
       [ 1.669 , -0.4386, -0.5397,  0.477 ],
       [ 3.2489, -1.0212, -0.5771,  0.1241],
       [ 0.3026,  0.5238,  0.0009,  1.3438],
       [-0.7135, -0.8312, -2.3702, -1.8608]])

假设每个名字都对应data数组中的一行,而我们想要选出对应于名字"Bob"的所有行。跟算术运算一样,数组的比较运算(如==)也是矢量化的。因此,对names和字符串"Bob"的比较运算将会产生一个布尔型数组:

In [102]: names == 'Bob'
Out[102]: array([ True, False, False,  True, False, False, False], dtype=bool)

这个布尔型数组可用于数组索引:

In [103]: data[names == 'Bob']
Out[103]: 
array([[ 0.0929,  0.2817,  0.769 ,  1.2464],
       [ 1.669 , -0.4386, -0.5397,  0.477 ]])

布尔型数组的长度必须跟被索引的轴长度一致。此外,还可以将布尔型数组跟切片、整数(或整数序列,稍后将对此进行详细讲解)混合使用:

In [103]: data[names == 'Bob']
Out[103]: 
array([[ 0.0929,  0.2817,  0.769 ,  1.2464],
       [ 1.669 , -0.4386, -0.5397,  0.477 ]])

注意:如果布尔型数组的长度不对,布尔型选择就会出错,因此一定要小心。

下面的例子,我选取了names == 'Bob'的行,并索引了列:

In [104]: data[names == 'Bob', 2:]
Out[104]: 
array([[ 0.769 ,  1.2464],
       [-0.5397,  0.477 ]])
​
In [105]: data[names == 'Bob', 3]
Out[105]: array([ 1.2464,  0.477 ])

要选择除"Bob"以外的其他值,既可以使用不等于符号(!=),也可以通过~对条件进行否定:

In [106]: names != 'Bob'
Out[106]: array([False,  True,  True, False,  True,  True,  True], dtype=bool)
​
In [107]: data[~(names == 'Bob')]
Out[107]:
array([[ 1.0072, -1.2962,  0.275 ,  0.2289],
       [ 1.3529,  0.8864, -2.0016, -0.3718],
       [ 3.2489, -1.0212, -0.5771,  0.1241],
       [ 0.3026,  0.5238,  0.0009,  1.3438],
       [-0.7135, -0.8312, -2.3702, -1.8608]])

~操作符用来反转条件很好用:

In [108]: cond = names == 'Bob'
​
In [109]: data[~cond]
Out[109]: 
array([[ 1.0072, -1.2962,  0.275 ,  0.2289],
       [ 1.3529,  0.8864, -2.0016, -0.3718],
       [ 3.2489, -1.0212, -0.5771,  0.1241],
       [ 0.3026,  0.5238,  0.0009,  1.3438],
       [-0.7135, -0.8312, -2.3702, -1.8608]])

选取这三个名字中的两个需要组合应用多个布尔条件,使用&(和)、|(或)之类的布尔算术运算符即可:

In [110]: mask = (names == 'Bob') | (names == 'Will')
​
In [111]: mask
Out[111]: array([ True, False,  True,  True,  True, False, False], dtype=bool)
​
In [112]: data[mask]
Out[112]: 
array([[ 0.0929,  0.2817,  0.769 ,  1.2464],
       [ 1.3529,  0.8864, -2.0016, -0.3718],
       [ 1.669 , -0.4386, -0.5397,  0.477 ],
       [ 3.2489, -1.0212, -0.5771,  0.1241]])

通过布尔型索引选取数组中的数据,将总是创建数据的副本,即使返回一模一样的数组也是如此。

注意:Python关键字and和or在布尔型数组中无效。要使用&与|。

通过布尔型数组设置值是一种经常用到的手段。为了将data中的所有负值都设置为0,我们只需:

In [113]: data[data < 0] = 0
​
In [114]: data
Out[114]: 
array([[ 0.0929,  0.2817,  0.769 ,  1.2464],
       [ 1.0072,  0.    ,  0.275 ,  0.2289],
       [ 1.3529,  0.8864,  0.    ,  0.    ],
       [ 1.669 ,  0.    ,  0.    ,  0.477 ],
       [ 3.2489,  0.    ,  0.    ,  0.1241],
       [ 0.3026,  0.5238,  0.0009,  1.3438],
       [ 0.    ,  0.    ,  0.    ,  0.    ]])

通过一维布尔数组设置整行或列的值也很简单:

In [115]: data[names != 'Joe'] = 7
​
In [116]: data
Out[116]: 
array([[ 7.    ,  7.    ,  7.    ,  7.    ],
       [ 1.0072,  0.    ,  0.275 ,  0.2289],
       [ 7.    ,  7.    ,  7.    ,  7.    ],
       [ 7.    ,  7.    ,  7.    ,  7.    ],
       [ 7.    ,  7.    ,  7.    ,  7.    ],
       [ 0.3026,  0.5238,  0.0009,  1.3438],
       [ 0.    ,  0.    ,  0.    ,  0.    ]])

后面会看到,这类二维数据的操作也可以用pandas方便的来做。

花式索引

花式索引(Fancy indexing)是一个NumPy术语,它指的是利用整数数组进行索引。假设我们有一个8×4数组:

In [117]: arr = np.empty((8, 4))
​
In [118]: for i in range(8):
   .....:     arr[i] = i
​
In [119]: arr
Out[119]: 
array([[ 0.,  0.,  0.,  0.],
       [ 1.,  1.,  1.,  1.],
       [ 2.,  2.,  2.,  2.],
       [ 3.,  3.,  3.,  3.],
       [ 4.,  4.,  4.,  4.],
       [ 5.,  5.,  5.,  5.],
       [ 6.,  6.,  6.,  6.],
       [ 7.,  7.,  7.,  7.]])

为了以特定顺序选取行子集,只需传入一个用于指定顺序的整数列表或ndarray即可:

In [120]: arr[[4, 3, 0, 6]]
Out[120]: 
array([[ 4.,  4.,  4.,  4.],
       [ 3.,  3.,  3.,  3.],
       [ 0.,  0.,  0.,  0.],
       [ 6.,  6.,  6.,  6.]])

这段代码确实达到我们的要求了!使用负数索引将会从末尾开始选取行:

In [121]: arr[[-3, -5, -7]]
Out[121]: 
array([[ 5.,  5.,  5.,  5.],
       [ 3.,  3.,  3.,  3.],
       [ 1.,  1.,  1.,  1.]])

一次传入多个索引数组会有一点特别。它返回的是一个一维数组,其中的元素对应各个索引元组:

In [122]: arr = np.arange(32).reshape((8, 4))
​
In [123]: arr
Out[123]: 
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15],
       [16, 17, 18, 19],
       [20, 21, 22, 23],
       [24, 25, 26, 27],
       [28, 29, 30, 31]])
​
In [124]: arr[[1, 5, 7, 2], [0, 3, 1, 2]]
Out[124]: array([ 4, 23, 29, 10])

附录A中会详细介绍reshape方法。

最终选出的是元素(1,0)、(5,3)、(7,1)和(2,2)。无论数组是多少维的,花式索引总是一维的。

这个花式索引的行为可能会跟某些用户的预期不一样(包括我在内),选取矩阵的行列子集应该是矩形区域的形式才对。下面是得到该结果的一个办法:

In [125]: arr[[1, 5, 7, 2]][:, [0, 3, 1, 2]]
Out[125]: 
array([[ 4,  7,  5,  6],
       [20, 23, 21, 22],
       [28, 31, 29, 30],
       [ 8, 11,  9, 10]])

记住,花式索引跟切片不一样,它总是将数据复制到新数组中。



这篇关于【数据分析从入门到“入坑“系列】利用Python学习数据分析-Numpy中的索引的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程