Python网络爬虫之requests模块2
2021/7/13 17:08:06
本文主要是介绍Python网络爬虫之requests模块2,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
Python网络爬虫之requests模块(2)
今日内容
session处理cookie
proxies参数设置请求代理ip
基于线程池的数据爬取
知识点回顾
xpath的解析流程
bs4的解析流程
常用xpath表达式
常用bs4解析方法
了解cookie和session
- 无状态的http协议
- 如上图所示,HTTP协议 是无状态的协议,用户浏览服务器上的内容,只需要发送页面请求,服务器返回内容。对于服务器来说,并不关心,也并不知道是哪个用户的请求。对于一般浏览性的网页来说,没有任何问题。
- 但是,现在很多的网站,是需要用户登录的。以淘宝为例:比如说某个用户想购买一个产品,当点击 “ 购买按钮 ” 时,由于HTTP协议 是无状态的,那对于淘宝来说,就不知道是哪个用户操作的。
- 为了实现这种用户标记,服务器就采用了cookie这种机制来识别具体是哪一个用户的访问。
了解Cookie
-
如图,为了实现用户标记,在Http无状态请求的基础之上,我们需要在请求中携带一些用户信息(比如用户名之类,这些信息是服务器发送到本地浏览器的,但是服务器并不存储这些信息),这就是cookie机制。
-
需要注意的是:cookie信息是保存在本地浏览器里面的,服务器上并不存储相关的信息。 在发送请求时,cookie的这些内容是放在 Http协议中的header 字段中进行传输的。
-
几乎现在所有的网站都会发送一些 cookie信息过来,当用户请求中携带了cookie信息,服务器就可以知道是哪个用户的访问了,从而不需要再使用账户和密码登录。
-
但是,刚才也提到了,cookie信息是直接放在Http协议的header中进行传输的,看得出来,这是个隐患!一旦别人获取到你的cookie信息(截获请求,或者使用你的电脑),那么他很容易从cookie中分析出你的用户名和密码。为了解决这个隐患,所以有了session机制。
了解session
- 刚才提到了cookie不安全,所以有了session机制。简单来说(每个框架都不一样,这只是举一个通用的实现策略),整过过程是这样:
- 服务器根据用户名和密码,生成一个session ID,存储到服务器的数据库中。
- 用户登录访问时,服务器会将对应的session ID发送给用户(本地浏览器)。
- 浏览器会将这个session ID存储到cookie中,作为一个键值项。
- 以后,浏览器每次请求,就会将含有session ID的cookie信息,一起发送给服务器。
- 服务器收到请求之后,通过cookie中的session ID,到数据库中去查询,解析出对应的用户名,就知道是哪个用户的请求了。
总结
-
cookie 在客户端(本地浏览器),session 在服务器端。cookie是一种浏览器本地存储机制。存储在本地浏览器中,和服务器没有关系。每次请求,用户会带上本地cookie的信息。这些cookie信息也是服务器之前发送给浏览器的,或者是用户之前填写的一些信息。
-
Cookie有不安全机制。 你不能把所有的用户信息都存在本地,一旦被别人窃取,就知道你的用户名和密码,就会很危险。所以引入了session机制。
-
服务器在发送id时引入了一种session的机制,很简单,就是根据用户名和密码,生成了一段随机的字符串,这段字符串是有过期时间的。
-
一定要注意:session是服务器生成的,存储在服务器的数据库或者文件中,然后把sessionID发送给用户,用户存储在本地cookie中。每次请求时,把这个session ID带给服务器,服务器根据session ID到数据库中去查询,找到是哪个用户,就可以对用户进行标记了。
-
session 的运行依赖 session ID,而 session ID 是存在 cookie 中的,也就是说,如果浏览器禁用了 cookie ,那么同时 session 也会失效(但是可以通过其它方式实现,比如在url中传递 session ID)
-
用户验证这种场合一般会用 session。 因此,维持一个会话的核心就是客户端的唯一标识,即session ID
引入
有些时候,我们在使用爬虫程序去爬取一些用户相关信息的数据(爬取张三“人人网”个人主页数据)时,如果使用之前requests模块常规操作时,往往达不到我们想要的目的,例如:
!/usr/bin/env python
-- coding:utf-8 --
import requests
if name == "main":
#张三人人网个人信息页面的url url = 'http://www.renren.com/289676607/profile'
伪装UA
headers={ 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36', } #发送请求,获取响应对象 response = requests.get(url=url,headers=headers) #将响应内容写入文件 with open('./renren.html','w',encoding='utf-8') as fp: fp.write(response.text)
一.基于requests模块的cookie操作
- 结果发现,写入到文件中的数据,不是张三个人页面的数据,而是人人网登陆的首页面,why?首先我们来回顾下cookie的相关概念及作用:
- cookie概念:当用户通过浏览器首次访问一个域名时,访问的web服务器会给客户端发送数据,以保持web服务器与客户端之间的状态保持,这些数据就是cookie。
- cookie作用:我们在浏览器中,经常涉及到数据的交换,比如你登录邮箱,登录一个页面。我们经常会在此时设置30天内记住我,或者自动登录选项。那么它们是怎么记录信息的呢,答案就是今天的主角cookie了,Cookie是由HTTP服务器设置的,保存在浏览器中,但HTTP协议是一种无状态协议,在数据交换完毕后,服务器端和客户端的链接就会关闭,每次交换数据都需要建立新的链接。就像我们去超市买东西,没有积分卡的情况下,我们买完东西之后,超市没有我们的任何消费信息,但我们办了积分卡之后,超市就有了我们的消费信息。cookie就像是积分卡,可以保存积分,商品就是我们的信息,超市的系统就像服务器后台,http协议就是交易的过程。
- 经过cookie的相关介绍,其实你已经知道了为什么上述案例中爬取到的不是张三个人信息页,而是登录页面。那应该如何抓取到张三的个人信息页呢?
思路:
1.我们需要使用爬虫程序对人人网的登录时的请求进行一次抓取,获取请求中的cookie数据
2.在使用个人信息页的url进行请求时,该请求需要携带 1 中的cookie,只有携带了cookie后,服务器才可识别这次请求的用户信息,方可响应回指定的用户信息页数据
!/usr/bin/env python
-- coding:utf-8 --
import requests
if name == "main":
#登录请求的url(通过抓包工具获取) post_url = 'http://www.renren.com/ajaxLogin/login?1=1&uniqueTimestamp=201873958471' #创建一个session对象,该对象会自动将请求中的cookie进行存储和携带 session = requests.session()
伪装UA
headers={ 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36', } formdata = { 'email': '17701256561', 'icode': '', 'origURL': 'http://www.renren.com/home', 'domain': 'renren.com', 'key_id': '1', 'captcha_type': 'web_login', 'password': '7b456e6c3eb6615b2e122a2942ef3845da1f91e3de075179079a3b84952508e4', 'rkey': '44fd96c219c593f3c9612360c80310a3', 'f': 'https%3A%2F%2Fwww.baidu.com%2Flink%3Furl%3Dm7m_NSUp5Ri_ZrK5eNIpn_dMs48UAcvT-N_kmysWgYW%26wd%3D%26eqid%3Dba95daf5000065ce000000035b120219', } #使用session发送请求,目的是为了将session保存该次请求中的cookie session.post(url=post_url,data=formdata,headers=headers) get_url = 'http://www.renren.com/960481378/profile' #再次使用session进行请求的发送,该次请求中已经携带了cookie response = session.get(url=get_url,headers=headers) #设置响应内容的编码格式 response.encoding = 'utf-8' #将响应内容写入文件 with open('./renren.html','w') as fp: fp.write(response.text)
二.基于requests模块的代理操作
什么是代理
代理就是第三方代替本体处理相关事务。例如:生活中的代理:代购,中介,微商......
爬虫中为什么需要使用代理
一些网站会有相应的反爬虫措施,例如很多网站会检测某一段时间某个IP的访问次数,如果访问频率太快以至于看起来不像正常访客,它可能就会会禁止这个IP的访问。所以我们需要设置一些代理IP,每隔一段时间换一个代理IP,就算IP被禁止,依然可以换个IP继续爬取。
代理的分类:
正向代理:代理客户端获取数据。正向代理是为了保护客户端防止被追究责任。
反向代理:代理服务器提供数据。反向代理是为了保护服务器或负责负载均衡。
免费代理ip提供网站
http://www.goubanjia.com/
西祠代理
快代理
代码
!/usr/bin/env python
-- coding:utf-8 --
import requests
import random
if name == "main":
#不同浏览器的UA
header_list = [
# 遨游
{"user-agent": "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Maxthon 2.0)"},
# 火狐
{"user-agent": "Mozilla/5.0 (Windows NT 6.1; rv:2.0.1) Gecko/20100101 Firefox/4.0.1"},
# 谷歌
{
"user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_0) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11"}
]
#不同的代理IP
proxy_list = [
{"http": "112.115.57.20:3128"},
{'http': '121.41.171.223:3128'}
]
#随机获取UA和代理IP
header = random.choice(header_list)
proxy = random.choice(proxy_list)
url = 'http://www.baidu.com/s?ie=UTF-8&wd=ip' #参数3:设置代理 response = requests.get(url=url,headers=header,proxies=proxy) response.encoding = 'utf-8' with open('daili.html', 'wb') as fp: fp.write(response.content) #切换成原来的IP requests.get(url, proxies={"http": ""})
三.基于multiprocessing.dummy线程池的数据爬取
需求:爬取梨视频的视频信息,并计算其爬取数据的耗时
普通爬取
%%time
import requests
import random
from lxml import etree
import re
from fake_useragent import UserAgent
安装fake-useragent库:pip install fake-useragent
url = 'http://www.pearvideo.com/category_1'
随机产生UA,如果报错则可以添加如下参数:
ua = UserAgent(verify_ssl=False,use_cache_server=False).random
禁用服务器缓存:
ua = UserAgent(use_cache_server=False)
不缓存数据:
ua = UserAgent(cache=False)
忽略ssl验证:
ua = UserAgent(verify_ssl=False)
ua = UserAgent().random
headers = {
'User-Agent':ua
}
获取首页页面数据
page_text = requests.get(url=url,headers=headers).text
对获取的首页页面数据中的相关视频详情链接进行解析
tree = etree.HTML(page_text)
li_list = tree.xpath('//div[@id="listvideoList"]/ul/li')
detail_urls = []
for li in li_list:
detail_url = 'http://www.pearvideo.com/'+li.xpath('./div/a/@href')[0]
title = li.xpath('.//div[@class="vervideo-title"]/text()')[0]
detail_urls.append(detail_url)
for url in detail_urls:
page_text = requests.get(url=url,headers=headers).text
vedio_url = re.findall('srcUrl="(.*?)"',page_text,re.S)[0]
data = requests.get(url=vedio_url,headers=headers).content fileName = str(random.randint(1,10000))+'.mp4' #随机生成视频文件名称 with open(fileName,'wb') as fp: fp.write(data) print(fileName+' is over')
基于线程池的爬取
%%time
import requests
import random
from lxml import etree
import re
from fake_useragent import UserAgent
安装fake-useragent库:pip install fake-useragent
导入线程池模块
from multiprocessing.dummy import Pool
实例化线程池对象
pool = Pool()
url = 'http://www.pearvideo.com/category_1'
随机产生UA
ua = UserAgent().random
headers = {
'User-Agent':ua
}
获取首页页面数据
page_text = requests.get(url=url,headers=headers).text
对获取的首页页面数据中的相关视频详情链接进行解析
tree = etree.HTML(page_text)
li_list = tree.xpath('//div[@id="listvideoList"]/ul/li')
detail_urls = []#存储二级页面的url
for li in li_list:
detail_url = 'http://www.pearvideo.com/'+li.xpath('./div/a/@href')[0]
title = li.xpath('.//div[@class="vervideo-title"]/text()')[0]
detail_urls.append(detail_url)
vedio_urls = []#存储视频的url
for url in detail_urls:
page_text = requests.get(url=url,headers=headers).text
vedio_url = re.findall('srcUrl="(.*?)"',page_text,re.S)[0]
vedio_urls.append(vedio_url)
使用线程池进行视频数据下载
func_request = lambda link:requests.get(url=link,headers=headers).content
video_data_list = pool.map(func_request,vedio_urls)
使用线程池进行视频数据保存
func_saveData = lambda data:save(data)
pool.map(func_saveData,video_data_list)
def save(data):
fileName = str(random.randint(1,10000))+'.mp4'
with open(fileName,'wb') as fp:
fp.write(data)
print(fileName+'已存储')
pool.close()
pool.join()
这篇关于Python网络爬虫之requests模块2的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-24Python编程基础详解
- 2024-11-21Python编程基础教程
- 2024-11-20Python编程基础与实践
- 2024-11-20Python编程基础与高级应用
- 2024-11-19Python 基础编程教程
- 2024-11-19Python基础入门教程
- 2024-11-17在FastAPI项目中添加一个生产级别的数据库——本地环境搭建指南
- 2024-11-16`PyMuPDF4LLM`:提取PDF数据的神器
- 2024-11-16四种数据科学Web界面框架快速对比:Rio、Reflex、Streamlit和Plotly Dash
- 2024-11-14获取参数学习:Python编程入门教程