python全国城市按经纬度分布在excel中
2021/7/15 14:40:16
本文主要是介绍python全国城市按经纬度分布在excel中,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
import pandas as pd #元数据 dict_map= { '海门':[121.15,31.89], '鄂尔多斯':[109.781327,39.608266], '招远':[120.38,37.35], '舟山':[122.207216,29.985295], '齐齐哈尔':[123.97,47.33], '盐城':[120.13,33.38], '赤峰':[118.87,42.28], '青岛':[120.33,36.07], '乳山':[121.52,36.89], '金昌':[102.188043,38.520089], '泉州':[118.58,24.93], '莱西':[120.53,36.86], '日照':[119.46,35.42], '胶南':[119.97,35.88], '南通':[121.05,32.08], '拉萨':[91.11,29.97], '云浮':[112.02,22.93], '梅州':[116.1,24.55], '文登':[122.05,37.2], '上海':[121.48,31.22], '攀枝花':[101.718637,26.582347], '威海':[122.1,37.5], '承德':[117.93,40.97], '厦门':[118.1,24.46], '汕尾':[115.375279,22.786211], '潮州':[116.63,23.68], '丹东':[124.37,40.13], '太仓':[121.1,31.45], '曲靖':[103.79,25.51], '烟台':[121.39,37.52], '福州':[119.3,26.08], '瓦房店':[121.979603,39.627114], '即墨':[120.45,36.38], '抚顺':[123.97,41.97], '玉溪':[102.52,24.35], '张家口':[114.87,40.82], '阳泉':[113.57,37.85], '莱州':[119.942327,37.177017], '湖州':[120.1,30.86], '汕头':[116.69,23.39], '昆山':[120.95,31.39], '宁波':[121.56,29.86], '湛江':[110.359377,21.270708], '揭阳':[116.35,23.55], '荣成':[122.41,37.16], '连云港':[119.16,34.59], '葫芦岛':[120.836932,40.711052], '常熟':[120.74,31.64], '东莞':[113.75,23.04], '河源':[114.68,23.73], '淮安':[119.15,33.5], '泰州':[119.9,32.49], '南宁':[108.33,22.84], '营口':[122.18,40.65], '惠州':[114.4,23.09], '江阴':[120.26,31.91], '蓬莱':[120.75,37.8], '韶关':[113.62,24.84], '嘉峪关':[98.289152,39.77313], '广州':[113.23,23.16], '延安':[109.47,36.6], '太原':[112.53,37.87], '清远':[113.01,23.7], '中山':[113.38,22.52], '昆明':[102.73,25.04], '寿光':[118.73,36.86], '盘锦':[122.070714,41.119997], '长治':[113.08,36.18], '深圳':[114.07,22.62], '珠海':[113.52,22.3], '宿迁':[118.3,33.96], '咸阳':[108.72,34.36], '铜川':[109.11,35.09], '平度':[119.97,36.77], '佛山':[113.11,23.05], '海口':[110.35,20.02], '江门':[113.06,22.61], '章丘':[117.53,36.72], '肇庆':[112.44,23.05], '大连':[121.62,38.92], '临汾':[111.5,36.08], '吴江':[120.63,31.16], '石嘴山':[106.39,39.04], '沈阳':[123.38,41.8], '苏州':[120.62,31.32], '茂名':[110.88,21.68], '嘉兴':[120.76,30.77], '长春':[125.35,43.88], '胶州':[120.03336,36.264622], '银川':[106.27,38.47], '张家港':[120.555821,31.875428], '三门峡':[111.19,34.76], '锦州':[121.15,41.13], '南昌':[115.89,28.68], '柳州':[109.4,24.33], '三亚':[109.511909,18.252847], '自贡':[104.778442,29.33903], '吉林':[126.57,43.87], '阳江':[111.95,21.85], '泸州':[105.39,28.91], '西宁':[101.74,36.56], '宜宾':[104.56,29.77], '呼和浩特':[111.65,40.82], '成都':[104.06,30.67], '大同':[113.3,40.12], '镇江':[119.44,32.2], '桂林':[110.28,25.29], '张家界':[110.479191,29.117096], '宜兴':[119.82,31.36], '北海':[109.12,21.49], '西安':[108.95,34.27], '金坛':[119.56,31.74], '东营':[118.49,37.46], '牡丹江':[129.58,44.6], '遵义':[106.9,27.7], '绍兴':[120.58,30.01], '扬州':[119.42,32.39], '常州':[119.95,31.79], '潍坊':[119.1,36.62], '重庆':[106.54,29.59], '台州':[121.420757,28.656386], '南京':[118.78,32.04], '滨州':[118.03,37.36], '贵阳':[106.71,26.57], '无锡':[120.29,31.59], '本溪':[123.73,41.3], '克拉玛依':[84.77,45.59], '渭南':[109.5,34.52], '马鞍山':[118.48,31.56], '宝鸡':[107.15,34.38], '焦作':[113.21,35.24], '句容':[119.16,31.95], '北京':[116.46,39.92], '徐州':[117.2,34.26], '衡水':[115.72,37.72], '包头':[110,40.58], '绵阳':[104.73,31.48], '乌鲁木齐':[87.68,43.77], '枣庄':[117.57,34.86], '杭州':[120.19,30.26], '淄博':[118.05,36.78], '鞍山':[122.85,41.12], '溧阳':[119.48,31.43], '库尔勒':[86.06,41.68], '安阳':[114.35,36.1], '开封':[114.35,34.79], '济南':[117,36.65], '德阳':[104.37,31.13], '温州':[120.65,28.01], '九江':[115.97,29.71], '邯郸':[114.47,36.6], '临安':[119.72,30.23], '兰州':[103.73,36.03], '沧州':[116.83,38.33], '临沂':[118.35,35.05], '南充':[106.110698,30.837793], '天津':[117.2,39.13], '富阳':[119.95,30.07], '泰安':[117.13,36.18], '诸暨':[120.23,29.71], '郑州':[113.65,34.76], '哈尔滨':[126.63,45.75], '聊城':[115.97,36.45], '芜湖':[118.38,31.33], '唐山':[118.02,39.63], '平顶山':[113.29,33.75], '邢台':[114.48,37.05], '德州':[116.29,37.45], '济宁':[116.59,35.38], '荆州':[112.239741,30.335165], '宜昌':[111.3,30.7], '义乌':[120.06,29.32], '丽水':[119.92,28.45], '洛阳':[112.44,34.7], '秦皇岛':[119.57,39.95], '株洲':[113.16,27.83], '石家庄':[114.48,38.03], '莱芜':[117.67,36.19], '常德':[111.69,29.05], '保定':[115.48,38.85], '湘潭':[112.91,27.87], '金华':[119.64,29.12], '岳阳':[113.09,29.37], '长沙':[113,28.21], '衢州':[118.88,28.97], '廊坊':[116.7,39.53], '菏泽':[115.480656,35.23375], '合肥':[117.27,31.86], '武汉':[114.31,30.52], '大庆':[125.03,46.58] } #经纬度四舍五入 dict_map_round={} for (key,value) in dict_map.items(): dict_map_round[key]=[round(value[0]),round(value[1])] #创建datafarme dict_test={} for i in range(15,50): dict_test[i]=[0]*80 #核心 同经纬度字符串连接 for (key,value) in dict_map_round.items(): if dict_test[value[1]][value[0]-80]==0: dict_test[value[1]][value[0]-80]=key else: dict_test[value[1]][value[0]-80]=dict_test[value[1]][value[0]-80]+key #存储,并且按纬度倒叙 frame = pd.DataFrame.from_dict(dict_test, orient='index') frame=frame.reindex(index=frame.index[::-1]) #本地存储输出 frame.to_excel('21213.xlsx')
效果图:
这篇关于python全国城市按经纬度分布在excel中的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-24Python编程基础详解
- 2024-11-21Python编程基础教程
- 2024-11-20Python编程基础与实践
- 2024-11-20Python编程基础与高级应用
- 2024-11-19Python 基础编程教程
- 2024-11-19Python基础入门教程
- 2024-11-17在FastAPI项目中添加一个生产级别的数据库——本地环境搭建指南
- 2024-11-16`PyMuPDF4LLM`:提取PDF数据的神器
- 2024-11-16四种数据科学Web界面框架快速对比:Rio、Reflex、Streamlit和Plotly Dash
- 2024-11-14获取参数学习:Python编程入门教程