python与机器学习
2021/7/18 17:37:50
本文主要是介绍python与机器学习,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
机器学习
数据挖掘、CV、NLP、语音识别、统计学习、模式识别
套路:1.数据收集处理;2.特征选择与模型构建;3.评估与预测
站点:kaggle github
python库
科学计算库numpy
线性回归
例子:工资x1、年龄x2、贷款额度y关系关系:;
预测一个值,这个值有区间。工资和年龄是特征;贷款额度是目标或者标签;
拟合一个面分割的过程;y= a+b*x1+c*x2;a偏置参数对结果影响小;bc权重参数,对结果影响大。
真实值y与预测值y'的误差;一万个样本一万个,这些误差满足:独立同分布,均值0方差为~的高斯分析。
独立即两个贷款人样本不相关。
同分布即都来同一个银行贷款。
高斯分布即贷款浮动满足正太分布,浮动不会大。
似然函数:乘积,用来根据样本数据估计参数值。
最大似然估计:似然函数越大越好----预测值成为真实值的可能性。
这篇关于python与机器学习的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-21Python编程基础教程
- 2024-11-20Python编程基础与实践
- 2024-11-20Python编程基础与高级应用
- 2024-11-19Python 基础编程教程
- 2024-11-19Python基础入门教程
- 2024-11-17在FastAPI项目中添加一个生产级别的数据库——本地环境搭建指南
- 2024-11-16`PyMuPDF4LLM`:提取PDF数据的神器
- 2024-11-16四种数据科学Web界面框架快速对比:Rio、Reflex、Streamlit和Plotly Dash
- 2024-11-14获取参数学习:Python编程入门教程
- 2024-11-14Python编程基础入门