Python交互图表可视化 bokeh-- 柱状图、堆叠图、直方图
2021/7/23 8:06:08
本文主要是介绍Python交互图表可视化 bokeh-- 柱状图、堆叠图、直方图,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
柱状图、堆叠图、直方图
单系列柱状图
多系列柱状图
堆叠图
直方图
import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline # 不发出警告 import warnings warnings.filterwarnings('ignore') # 导入notebook绘图模块 from bokeh.io import output_notebook output_notebook() # 导入图表绘制、图表展示模块 from bokeh.plotting import figure,show from bokeh.models import ColumnDataSource
单系列柱状图
# 绘制竖向柱状图:vbar p = figure(plot_width=600, plot_height=400) p.vbar(x=[1,2,3], width=0.5, bottom=0, top=[1.2, 2.5, 3.7], # x: 横轴坐标,width:宽度,bottom:底高度,top:顶高度 # color = ['red', 'blue', 'green'] , # 单独设置颜色,也可以整体设置 line_width=1, line_alpha=0.8, line_color='black', line_dash=[8,4], fill_color='red', fill_alpha=0.6 ) show(p)
绘制横向柱状图:hbar
df = pd.DataFrame({'value': np.random.randn(100)*10, 'color': np.random.choice(['red', 'blue', 'green'],100)}) p = figure(plot_width=600, plot_height=400) p.hbar(y=df.index, height=0.5, left=0, right=df['value'], # y: 纵轴坐标,height:厚度,left:左边最小值,right:右边最大值 color = df['color'] , # 单独设置颜色,也可以整体设置 fill_alpha=0.6 ) show(p)
单系列柱状图 - 分类设置标签
from bokeh.palettes import Spectral6 from bokeh.transform import factor_cmap # 创建一个包含标签的data,对象类型为ColumnDataSource fruits=['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries'] counts=[5, 3, 4, 2, 4, 6] source=ColumnDataSource(data=dict(fruits=fruits, counts=counts)) colors=['salmon', 'olive', 'darkred','goldenrod', 'skyblue','orange'] # 绘制柱状图,横轴直接显示标签 p=figure(x_range=fruits, y_range=(0,9), plot_height=350, title='Fruit Counts',tools='') p.vbar(x='fruits', top='counts', source=source, # 加载数据的另一种方式 width=0.9, alpha=0.8, color=factor_cmap('fruits', palette=Spectral6, factors=fruits), # 设置颜色 legend="fruits" ) # factor_cmap(field_name, palette, factors, start=0, end=None, nan_color='gray'):颜色转换模块,生成一个颜色转化对象 # field_name: 分类名称,palette:调色盘,factors:用于在调色盘中分颜色的参数 p.xgrid.grid_line_color=None p.legend.orientation='horizontal' p.legend.location='top_center' show(p)
多系列柱状图
from bokeh.transform import dodge from bokeh.core.properties import value df=pd.DataFrame({'2015': [2, 1, 4, 3, 2, 4], '2016': [5, 3, 3, 2, 4, 6], '2017': [3, 2, 4, 4, 5, 3]}, index = ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries']) df.head() fruits=df.index.tolist() # 横坐标 years=df.columns.tolist() # 系列名 data={'index': fruits} # 生成数据,格式为dict,也可以直接用df for year in years: data[year] = df[year].tolist() # 将数据转化为ColumnDataSource对象 source=ColumnDataSource(data=data) p=figure(x_range=fruits, y_range=(0,7), plot_width=350, title="Fruit Count by Year", tools='') # 绘制多系列柱状图 p.vbar(x=dodge('index', -0.25, range=p.x_range), top='2015', width=0.2, source=source, color='#c9d9d3', legend=value('2015')) p.vbar(x=dodge('index', 0.0, range=p.x_range), top='2016', width=0.2, source=source, color='#718dbf', legend=value('2016')) p.vbar(x=dodge('index', 0.25, range=p.x_range), top='2017', width=0.2, source=source, color='#e84d60', legend=value('2017')) # dodge(field_name, value, range=None) -> 转换成一个可分组的对象,value为元素的位置 # value(val, transform=None) -> 按照年份分为dict p.xgrid.grid_line_color=None p.legend.orientation='horizontal' p.legend.location='top_center' show(p)
堆叠图
from bokeh.core.properties import value # 创建数据 fruits = ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries'] years = ['2015', '2016', '2017'] colors=['red', 'blue', 'orange'] data={'fruits': fruits, '2015': [2, 1, 4, 3, 2, 4], '2016': [5, 3, 3, 2, 4, 6], '2017': [3, 2, 4, 4, 5, 3] } source=ColumnDataSource(data=data) # 绘制堆叠图,注意第一个参数需要放years p=figure(x_range=fruits, plot_height=450, title="Fruit Count by Year", tools='') renderers=p.vbar_stack(years, # 设置堆叠值,这里source中包含了不同年份的值,years变量用于识别不同堆叠层 x='fruits', # 设置x坐标 source=source, width=0.9, color=colors, legend=[value(x) for x in years], name=years ) p.xgrid.grid_line_color = None p.axis.minor_tick_line_color=None p.outline_line_color=None p.legend.location='top_center' p.legend.orientation='horizontal' show(p)
堆叠图 - 横向
# 导入颜色模块 from bokeh.palettes import GnBu3, OrRd3 fruits = ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries'] years = ['2015', '2016', '2017'] exports={'fruits': fruits, '2015': [2,1,4,3,2,4], '2016': [5,3,4,2,4,6], '2017': [3,2,4,4,5,3] } imports={'fruits': fruits, '2015': [-1,0,-1,-3,-2,-1], '2016': [-2,-1,-3,-1,-2,-2], '2017': [-1,-2,-1,0,-2,-2] } p=figure(y_range=fruits, plot_height=350, x_range=(-16,16), title="Fruit import/export by year") # 绘制出口数据堆叠图 p.hbar_stack(years, y='fruits', height=0.9, color=GnBu3, source=ColumnDataSource(exports), legend=['%s exports' % x for x in years] ) # 绘制进口数据堆叠图 p.hbar_stack(years, y='fruits', height=0.9, color=GnBu3, source=ColumnDataSource(imports), legend=['%s exports' % x for x in years] ) p.y_range.range_padding=0.2 # 调整边界间隔 p.ygrid.grid_line_color=None p.legend.location='top_left' p.axis.minor_tick_line_color=None p.outline_line_color=None show(p)
直方图
df = pd.DataFrame({'value': np.random.randn(1000)*100}) df.index.name='index' df.head() hist, edges = np.histogram(df['value'],bins=20) print(hist[:5]) print(edges) # 将数据解析成直方图统计格式 # 高阶函数 np.histogram(a, bins=10, range=None, weight=None, density=None) # a: 数据;bins:箱数; range:最大最小值的范围,如果不设定,则为(a.min(), a.max()) # weights:权重;density:为True则返回"频率",为False则返回"计数" # 返回值1 - hist:每个箱子的统计值(top) # 返回值2 - edges:每个箱子的位置坐标,这里n个bins将会有n+1个edges p=figure(title="HIST", tools="save", background_fill_color="#E8DDCB") p.quad(top=hist, bottom=0, left=edges[:-1],right=edges[1:], # 分别代表每个柱子的四边值 fill_color="#036564", line_color="#033649" ) # figure.quad 绘制直方图 show(p)
————————————————
版权声明:本文为CSDN博主「Jepson2017」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:
https://blog.csdn.net/d1240673769/article/details/118881720
这篇关于Python交互图表可视化 bokeh-- 柱状图、堆叠图、直方图的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-24Python编程基础详解
- 2024-11-21Python编程基础教程
- 2024-11-20Python编程基础与实践
- 2024-11-20Python编程基础与高级应用
- 2024-11-19Python 基础编程教程
- 2024-11-19Python基础入门教程
- 2024-11-17在FastAPI项目中添加一个生产级别的数据库——本地环境搭建指南
- 2024-11-16`PyMuPDF4LLM`:提取PDF数据的神器
- 2024-11-16四种数据科学Web界面框架快速对比:Rio、Reflex、Streamlit和Plotly Dash
- 2024-11-14获取参数学习:Python编程入门教程