python并发编程之进程池和线程池
2021/7/24 7:09:33
本文主要是介绍python并发编程之进程池和线程池,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
1、Python标准模块——concurrent.futures
concurrent.futures模块提供了高度封装的异步调用接口 ThreadPoolExecutor:线程池,提供异步调用 ProcessPoolExecutor:进程池,提供异步调用
2、基本方法
submit(fn, *args, **kwargs):异步提交任务 map(func, *iterables, timeout=None, chunksize=1):取代for循环submit的操作 shutdown(wait=True):相当于进程池的pool.close()+pool.join()操作 wait=True,等待池内所有任务执行完毕回收完资源后才继续 wait=False,立即返回,并不会等待池内的任务执行完毕 但不管wait参数为何值,整个程序都会等到所有任务执行完毕 submit和map必须在shutdown之前 result(timeout=None):取得结果 add_done_callback(fn):回调函数 done():判断某一个线程是否完成 cancle():取消某个任务
3、进程池:ProcessPoolExecutor
from concurrent.futures import ProcessPoolExecutor import os,time,random def task(n): print('%s is runing' %os.getpid()) time.sleep(random.randint(1,3)) return n**2 if __name__ == '__main__': executor=ProcessPoolExecutor(max_workers=3) futures=[] for i in range(11): future=executor.submit(task,i) futures.append(future) executor.shutdown(True) print('+++>') for future in futures: print(future.result())
4、线程池:ThreadPoolExecutor与进程池方法一样,参考进程池代码
5、map的用法:map取代了for+submit
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor import os,time,random def task(n): print('%s is runing' %os.getpid()) time.sleep(random.randint(1,3)) return n**2 if __name__ == '__main__': executor=ThreadPoolExecutor(max_workers=3) # for i in range(11): # future=executor.submit(task,i) executor.map(task,range(1,12)) #map取代了for+submit
这篇关于python并发编程之进程池和线程池的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-24Python编程基础详解
- 2024-11-21Python编程基础教程
- 2024-11-20Python编程基础与实践
- 2024-11-20Python编程基础与高级应用
- 2024-11-19Python 基础编程教程
- 2024-11-19Python基础入门教程
- 2024-11-17在FastAPI项目中添加一个生产级别的数据库——本地环境搭建指南
- 2024-11-16`PyMuPDF4LLM`:提取PDF数据的神器
- 2024-11-16四种数据科学Web界面框架快速对比:Rio、Reflex、Streamlit和Plotly Dash
- 2024-11-14获取参数学习:Python编程入门教程