python并发编程(并发与并行,同步和异步,阻塞与非阻塞)
2021/7/29 9:06:08
本文主要是介绍python并发编程(并发与并行,同步和异步,阻塞与非阻塞),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
1. 并发 & 并行
并发:在操作系统中,是指一个时间段中有几个程序都处于已启动运行到运行完毕之间,且这几个程序都是在同一个处理机上运行,但任一个时刻点上只有一个程序在处理机上运行。简言之,是指系统具有处理多个任务的能力。
并行:当系统有一个以上CPU时,则线程的操作有可能非并发。当一个CPU执行一个线程时,另一个CPU可以执行另一个线程,两个线程互不抢占CPU资源,可以同时进行,这种方式我们称之为并行(Parallel)。简言之,是指系统具有同时处理多个任务的能力。
下面我们来两个例子:
View Codemusic的时间为3秒,game的时间为5秒,如果按照我们正常的执行,直接执行函数,那么将按顺序顺序执行,整个过程8秒。
View Code在这个例子中,我们开了两个线程,将music和game两个函数分别通过线程执行,运行结果显示两个线程同时开始,由于听音乐时间3秒,玩游戏时间5秒,所以整个过程完成时间为5秒。我们发现,通过开启多个线程,原本8秒的时间缩短为5秒,原本顺序执行现在是不是看起来好像是并行执行的?看起来好像是这样,听音乐的同时在玩游戏,整个过程的时间随最长的任务时间变化。但真的是这样吗?那么下面我来提出一个GIL锁的概念。
GIL(全局解释器锁):无论你启多少个线程,你有多少个cpu, Python在执行的时候会淡定的在同一时刻只允许一个线程运行。View Code
View Code
哎吆,这是怎么回事,串行执行比多线程还快?不符合常理呀。是不是颠覆了你的人生观,这个就和GIL锁有关,同一时刻,系统只允许一个线程执行,那么,就是说,本质上我们之前理解的多线程的并行是不存在的,那么之前的例子为什么时间确实缩短了呢?这里有涉及到一个任务的类型。
--任务: 1.IO密集型(会有cpu空闲的时间) 注:sleep等同于IO操作, socket通信也是IO 2.计算密集型 而之前那个例子恰好是IO密集型的例子,后面这个由于涉及到了加法和乘法,属于计算密集型操作,那么,就产生了一个结论,多线程对于IO密集型任务有作用, 而计算密集型任务不推荐使用多线程。 而其中我们还可以得到一个结论:由于GIL锁,多线程不可能真正实现并行,所谓的并行也只是宏观上并行微观上并发,本质上是由于遇到io操作不断的cpu切换 所造成并行的现象。由于cpu切换速度极快,所以看起来就像是在同时执行。 --问题:没有利用多核的优势
--这就造成了多线程不能同时执行,并且增加了切换的开销,串行的效率可能更高。
2. 同步 & 异步
对于一次IO访问(以read举例),数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。所以说,当一个read操作发生时,它会经历两个阶段:
1. 等待数据准备 (Waiting for the data to be ready) 2. 将数据从内核拷贝到进程中 (Copying the data from the kernel to the process)
同步:当进程执行IO(等待外部数据)的时候,-----等。同步(例如打电话的时候必须等) 异步:当进程执行IO(等待外部数据)的时候,-----不等,去执行其他任务,一直等到数据接收成功,再回来处理。异步(例如发短信) 当我们去爬取一个网页的时候,要爬取多个网站,有些人可能会发起多个请求,然后通过函数顺序调用。执行顺序也是先调用先执行。效率非常低。 下面我们看一下异步的一个例子:View Code
我们可以看到,三个请求发送顺序与返回顺序,并不一样,这样就体现了异步请求。即我同时将请求发送出去,哪个先回来我先处理哪个。
即我们可以理解为:我打电话的时候只允许和一个人通信,和这个人通信结束之后才允许和另一个人开始。这就是同步。
我们发短信的时候发完可以不去等待,去处理其他事情,当他回复之后我们再去处理,这样就大大解放了我们的时间。这就是异步。
体现在网页请求上面就是我请求一个网页时候等待他回复,否则不接收其它请求,这就是同步。另一种就是我发送请求之后不去等待他是否回复,而去处理其它请求,当处理完其他请求之后,某个请求说,我的回复了,然后程序转而去处理他的回复数据。这就是异步请求。所以,异步可以充分cpu的效率。
3. 阻塞 & 非阻塞
调用blocking IO会一直block住对应的进程直到操作完成,而non-blocking IO在kernel还准备数据的情况下会立刻返回。 下面我们通过socket实现一个命令行功能来感受一下。View Code
开启了服务器和一个客户端之后,我们在客户端输入一些命令,然后正确显示,功能实现。这是在我再打开一个客户端,输入命令,发现服务器迟迟没有响应。
这个就是当一个客户端在请求的时候,当这个客户端没有结束的时候,服务器不会去处理其他客户端的请求。这时候就阻塞了。
如何让服务器同时处理多个客户端请求呢?
View Code这段代码通过socketserver模块实现了socket的并发。这个过程中,当一个客户端在向服务器请求的时候,另一个客户端也可以正常请求。服务器在处理一个客户端请求的时候,另一个请求没有被阻塞。
总结:只要有一丁点阻塞,就是阻塞IO。
异步IO的特点就是全程无阻塞。
有些人常把同步阻塞和异步非阻塞联系起来,但实际上经过分析,阻塞与同步,非阻塞和异步的定义是不一样的。同步和异步的区别是遇到IO请求是否等待。阻塞和非阻塞的区别是数据没准备好的情况下是否立即返回。关于这两点的区别,看了很多博客,最后总结如下。
阻塞和非阻塞指的是执行一个操作是等操作结束再返回,还是马上返回。
比如餐馆的服务员为用户点菜,当有用户点完菜后,服务员将菜单给后台厨师,此时有两种方式:
- 第一种:就在出菜窗口等待,直到厨师炒完菜后将菜送到窗口,然后服务员再将菜送到用户手中;
- 第二种:等一会再到窗口来问厨师,某个菜好了没?如果没有先处理其他事情,等会再去问一次;
第一种就是阻塞方式,第二种则是非阻塞的。
同步和异步又是另外一个概念,它是事件本身的一个属性。还拿前面点菜为例,服务员直接跟厨师打交道,菜出来没出来,服务员直接知道,但只有当厨师将菜送到服务员手上,这个过程才算正常完成,这就是同步的事件。同样是点菜,有些餐馆有专门的传菜人员,当厨师炒好菜后,传菜员将菜送到传菜窗口,并通知服务员,这就变成异步的了。其实异步还可以分为两种:带通知的和不带通知的。前面说的那种属于带通知的。有些传菜员干活可能主动性不是很够,不会主动通知你,你就需要时不时的去关注一下状态。这种就是不带通知的异步。
对于同步和异步的事件,阻塞和非阻塞都是可以的。非阻塞又有两种方式:主动查询和被动接收消息。被动不意味着一定不好,在这里它恰恰是效率更高的,因为在主动查询里绝大部分的查询是在做无用功。对于带通知的异步事件,两者皆可。而对于不带通知的,则只能用主动查询。
但是对于非阻塞和异步的概念有点混淆,非阻塞只是意味着方法调用不阻塞,就是说作为服务员的你不用一直在窗口等,非阻塞的逻辑是"等可以读(写)了告诉你",但是完成读(写)工作的还是调用者(线程)服务员的你等菜到窗口了还是要你亲自去拿。而异步意味这你可以不用亲自去做读(写)这件事,你的工作让别人(别的线程)来做,你只需要发起调用,别人把工作做完以后,或许再通知你,它的逻辑是“我做完了 告诉/不告诉 你”,他和非阻塞的区别在于一个是"已经做完"另一个是"可以去做"。
这也是同步和异步最大的区别,就是同步在有通知时可以进行相关操作,而异步有通知时则代表操作已经完成
再举一个例子:
去书店借一本书,同步就是我要亲自到书店,问老板有没有这本书,阻塞就是老板查询的时候(读写)我只能在那等着,老板找到书后把书交给我,这就是同步阻塞。
我亲自到书店借书,老板在找这本书的时候,我可以去干别的,然后每隔一段时间去问老板书找到了没有,也可以等老板找到书以后通知我,这就是同步非阻塞。
我想借本书,找个人帮我去借,借到书以后再通知我,这就是异步,我只发起调用,但是本身并不参与这个事件,而是让别的线程去做这个事。
同步与异步是对应的,它们是线程之间的关系,两个线程之间要么是同步的,要么是异步的。
阻塞与非阻塞是对同一个线程来说的,在某个时刻,线程要么处于阻塞,要么处于非阻塞。
帮我借书的那个人有没有借到书,我可以打电话问他(轮询),也可以等他通知我,这是异步的通知;在借书的过程中借书的那个人可以轮询的方式查看书是否已经找到(缓冲区有没有数据),找到了你可以把它拿走,也可以等老板找到书后通知我,这是非阻塞的通知与轮询。
这篇关于python并发编程(并发与并行,同步和异步,阻塞与非阻塞)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-03用FastAPI掌握Python异步IO:轻松实现高并发网络请求处理
- 2025-01-02封装学习:Python面向对象编程基础教程
- 2024-12-28Python编程基础教程
- 2024-12-27Python编程入门指南
- 2024-12-27Python编程基础
- 2024-12-27Python编程基础教程
- 2024-12-27Python编程基础指南
- 2024-12-24Python编程入门指南
- 2024-12-24Python编程基础入门
- 2024-12-24Python编程基础:变量与数据类型