python常用模块-collections模块
2021/7/29 22:35:49
本文主要是介绍python常用模块-collections模块,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
在内置数据类型(dict、list、set、tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter、deque、defaultdict、namedtuple和OrderedDict等。
1.namedtuple: 生成可以使用名字来访问元素内容的tuple
2.deque: 双端队列,可以快速的从另外一侧追加和推出对象
3.Counter: 计数器,主要用来计数
4.OrderedDict: 有序字典
5.defaultdict: 带有默认值的字典
namedtuple(有名元组) 我们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成: >>> p = (1, 2) 1 但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。 这时,namedtuple就派上了用场: >>> from collections import namedtuple >>> Point = namedtuple('Point', ['x', 'y']) >>> p = Point(1, 2) >>> p.x 1 >>> p.y 2
用来记录城市信息 >>> from collections import namedtuple >>> City = namedtuple('City', 'name country population coordinates') # 第一个是类名,第二个是类的各个字段的名字。后者可以是由数个字符串组成的可迭代对象,或者是由空格分隔开的字段名组成的字符串 >>> tokyo = City('Tokyo', 'JP', 36.933, (35.689722, 139.691667)) >>> tokyo City(name='Tokyo', country='JP', population=36.933, coordinates=(35.689722, 139.691667)) >>> tokyo.population 36.933 >>> tokyo.coordinates (35.689722, 139.691667) >>> tokyo[1] 'JP'
deque 使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。 deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈: >>> from collections import deque >>> q = deque(['a', 'b', 'c']) >>> q.append('x') >>> q.appendleft('y') >>> q deque(['y', 'a', 'b', 'c', 'x']) deque除了实现list的append()和pop()外,还支持appendleft()和popleft(),这样就可以非常高效地往头部添加或删除元素。
OrderedDict 使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。 如果要保持Key的顺序,可以用OrderedDict: >>> from collections import OrderedDict >>> d = dict([('a', 1), ('b', 2), ('c', 3)]) >>> d # dict的Key是无序的 {'a': 1, 'c': 3, 'b': 2} >>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)]) >>> od # OrderedDict的Key是有序的 OrderedDict([('a', 1), ('b', 2), ('c', 3)]) 注意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序: >>> od = OrderedDict() >>> od['z'] = 1 >>> od['y'] = 2 >>> od['x'] = 3 >>> od.keys() # 按照插入的Key的顺序返回 ['z', 'y', 'x']
defaultdict 有如下值集合 [11,22,33,44,55,66,77,88,99,90…],将所有大于 66 的值保存至字典的第一个key中,将小于 66 的值保存至第二个key的值中。 即: {‘k1’: 大于66 , ‘k2’: 小于66} 原生字典解决方法 values = [11, 22, 33,44,55,66,77,88,99,90] my_dict = {} for value in values: if value>66: if my_dict.has_key('k1'): my_dict['k1'].append(value) else: my_dict['k1'] = [value] else: if my_dict.has_key('k2'): my_dict['k2'].append(value) else: my_dict['k2'] = [value] defaultdict字典解决方法 from collections import defaultdict values = [11, 22, 33,44,55,66,77,88,99,90] my_dict = defaultdict(list) for value in values: if value>66: my_dict['k1'].append(value) else: my_dict['k2'].append(value) 使用dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict: 也可以使用lambda设置默认值 >>> from collections import defaultdict >>> dd = defaultdict(lambda: 'N/A') >>> dd['key1'] = 'abc' >>> dd['key1'] # key1存在 'abc' >>> dd['key2'] # key2不存在,返回默认值 'N/A'
Counter Counter类的目的是用来跟踪值出现的次数。它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value。计数值可以是任意的Interger(包括0和负数)。Counter类和其他语言的bags或multisets很相似。 c = Counter('abcdeabcdabcaba') print c 输出:Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1})
这篇关于python常用模块-collections模块的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-25Python编程基础:变量与类型
- 2024-11-25Python编程基础与实践
- 2024-11-24Python编程基础详解
- 2024-11-21Python编程基础教程
- 2024-11-20Python编程基础与实践
- 2024-11-20Python编程基础与高级应用
- 2024-11-19Python 基础编程教程
- 2024-11-19Python基础入门教程
- 2024-11-17在FastAPI项目中添加一个生产级别的数据库——本地环境搭建指南
- 2024-11-16`PyMuPDF4LLM`:提取PDF数据的神器