Python Flask Web 高并发实现
2021/7/30 20:38:56
本文主要是介绍Python Flask Web 高并发实现,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
Flask超高并发,Flask多进程gevent ,Flask非gunicorn gevent多进程
1. flask + gevent + multiprocess + wsgi简介
常常大家都是用gunicorn来解决flask后端部署并发的问题, 然而觉得自启多进程是为更优雅的高并发方式。这样就不需要gunicorn了。也没有额外的第三方部署工作,于是有了以下flask + gevent + multiprocess + wsgi的测试
2. flask + gevent + multiprocess + wsgi程序代码app.py
# coding: utf-8 # flask + gevent + multiprocess + wsgi from gevent import monkey from gevent.pywsgi import WSGIServer monkey.patch_all() import datetime import os from multiprocessing import cpu_count, Process from flask import Flask, jsonify app = Flask(__name__) @app.route("/cppla", methods=['GET']) def function_benchmark(): return jsonify( { "status": "ok", "time": datetime.datetime.now().strftime('%Y-%m-%d %H:%M'), "pid": os.getpid() } ), 200 def run(MULTI_PROCESS): if MULTI_PROCESS == False: WSGIServer(('0.0.0.0', 8080), app).serve_forever() else: mulserver = WSGIServer(('0.0.0.0', 8080), app) mulserver.start() def server_forever(): mulserver.start_accepting() mulserver._stop_event.wait() for i in range(cpu_count()): p = Process(target=server_forever) p.start() if __name__ == "__main__": # 单进程 + 协程 run(False) # 多进程 + 协程 # run(True)
3. 测试环境
机器配置 4vCPU 8GB 环境配置 Centos 8 Python 3.6.8 Flask 1.1.2 Gevent 1.5.0 压测工具 WRK 4H8G机器
4. 单进程 + 协程 + WSGI
4.1 测试结果
QPS : 2361 r/s
4.2 测试详情
[root@vm5 ~]# nohup python3 cppla.py & [1] 9371 [root@vm5 ~]# nohup: ignoring input and appending output to 'nohup.out' [root@vm5 ~]# ps -ef | grep cppla root 9371 4184 4 03:33 pts/0 00:00:00 python3 cppla.py root 9377 4184 0 03:33 pts/0 00:00:00 grep --color=auto cppla [root@vm5 ~]#
[root@vm4 wrk]# curl 10.10.10.5:8080/cppla {"pid":9371,"status":"ok","time":"2020-04-20 04:19"} [root@vm4 wrk]# curl 10.10.10.5:8080/cppla {"pid":9371,"status":"ok","time":"2020-04-20 04:19"} [root@vm4 wrk]# curl 10.10.10.5:8080/cppla {"pid":9371,"status":"ok","time":"2020-04-20 04:19"} [root@vm4 wrk]# wrk -t12 -c400 -d30s http://10.10.10.5:8080/cppla Running 30s test @ http://10.10.10.5:8080/cppla 12 threads and 400 connections Thread Stats Avg Stdev Max +/- Stdev Latency 164.40ms 21.15ms 515.30ms 80.85% Req/Sec 199.61 47.81 565.00 70.38% 71237 requests in 30.10s, 10.95MB read Requests/sec: 2366.72 Transfer/sec: 372.44KB [root@vm4 wrk]# wrk -t20 -c800 -d30s http://10.10.10.5:8080/cppla Running 30s test @ http://10.10.10.5:8080/cppla 20 threads and 800 connections Thread Stats Avg Stdev Max +/- Stdev Latency 329.39ms 93.86ms 1.78s 92.80% Req/Sec 126.19 80.69 696.00 67.71% 71075 requests in 30.10s, 10.92MB read Socket errors: connect 0, read 0, write 0, timeout 97 Requests/sec: 2361.39 Transfer/sec: 371.65KB [root@vm4 wrk]#
5. 多进程 + 协程 + WSGI
5.1 测试结果
QPS : 7500 r/s
5.2 测试详情
[root@vm5 ~]# nohup python3 cppla.py & [1] 9537 [root@vm5 ~]# nohup: ignoring input and appending output to 'nohup.out' [root@vm5 ~]# ps -ef | grep cppla root 9537 4184 5 04:32 pts/0 00:00:00 python3 cppla.py root 9542 9537 0 04:32 pts/0 00:00:00 python3 cppla.py root 9543 9537 0 04:32 pts/0 00:00:00 python3 cppla.py root 9544 9537 0 04:32 pts/0 00:00:00 python3 cppla.py root 9545 9537 0 04:32 pts/0 00:00:00 python3 cppla.py root 9547 4184 0 04:32 pts/0 00:00:00 grep --color=auto cppla [root@vm5 ~]#
[root@vm4 wrk]# curl 10.10.10.5:8080/cppla {"pid":9543,"status":"ok","time":"2020-04-20 04:34"} [root@vm4 wrk]# curl 10.10.10.5:8080/cppla {"pid":9542,"status":"ok","time":"2020-04-20 04:34"} [root@vm4 wrk]# curl 10.10.10.5:8080/cppla {"pid":9545,"status":"ok","time":"2020-04-20 04:34"} [root@vm4 wrk]# wrk -t12 -c400 -d30s http://10.10.10.5:8080/cppla Running 30s test @ http://10.10.10.5:8080/cppla 12 threads and 400 connections Thread Stats Avg Stdev Max +/- Stdev Latency 56.10ms 15.16ms 187.30ms 85.05% Req/Sec 590.77 79.95 830.00 67.97% 212138 requests in 30.08s, 32.60MB read Requests/sec: 7051.89 Transfer/sec: 1.08MB [root@vm4 wrk]# wrk -t20 -c800 -d30s http://10.10.10.5:8080/cppla Running 30s test @ http://10.10.10.5:8080/cppla 20 threads and 800 connections Thread Stats Avg Stdev Max +/- Stdev Latency 101.59ms 40.23ms 337.80ms 66.06% Req/Sec 394.20 109.48 0.97k 74.47% 235844 requests in 30.10s, 36.25MB read Requests/sec: 7835.77 Transfer/sec: 1.20MB [root@vm4 wrk]#
补充:4核8线程3.6GHZ物理机上多进程并发高达15000QPS
也就是“理想”情况,每秒1w5 QPS,每小时5400万请求。
[root@vm4 wrk]# wrk -t30 -c1000 -d30s http://10.10.10.1:8080/cppla Running 30s test @ http://10.10.10.1:8080/cppla 30 threads and 1000 connections Thread Stats Avg Stdev Max +/- Stdev Latency 67.67ms 18.54ms 312.76ms 81.81% Req/Sec 489.92 76.58 710.00 68.65% 440105 requests in 30.09s, 68.07MB read Requests/sec: 14626.25 Transfer/sec: 2.26MB [root@vm4 wrk]#
参考链接:
1. https://www.cplusplus.me/2984.html
这篇关于Python Flask Web 高并发实现的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-14获取参数学习:Python编程入门教程
- 2024-11-14Python编程基础入门
- 2024-11-14Python编程入门指南
- 2024-11-13Python基础教程
- 2024-11-12Python编程基础指南
- 2024-11-12Python基础编程教程
- 2024-11-08Python编程基础与实践示例
- 2024-11-07Python编程基础指南
- 2024-11-06Python编程基础入门指南
- 2024-11-06怎么使用python 计算两个GPS的距离功能-icode9专业技术文章分享