Python代码优化的几点思路总结
2021/8/16 9:06:01
本文主要是介绍Python代码优化的几点思路总结,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
代码优化原则
Python 是一种脚本语言,相比 C/C++ 等编译语言,在效率和性能方面存在一些不足。但是,有很多时候,Python 的效率并没有想象中的那么夸张。下面对 Python 代码加速运行的技巧进行整理。
在深入代码优化细节之前,需要了解一些代码优化基本原则:
- 第一个基本原则是不要过早优化。很多人一开始写代码就奔着性能优化的目标,“让正确的程序更快要比让快速的程序正确容易得多”。因此,优化的前提是代码能正常工作。过早地进行优化可能会忽视对总体性能指标的把握,在得到全局结果前不要主次颠倒。
- 第二个基本原则是权衡优化的代价。优化是有代价的,想解决所有性能的问题是几乎不可能的。通常面临的选择是时间换空间或空间换时间。另外,开发代价也需要考虑。
- 第三个原则是不要优化那些无关紧要的部分。如果对代码的每一部分都去优化,这些修改会使代码难以阅读和理解。如果你的代码运行速度很慢,首先要找到代码运行慢的位置,通常是内部循环,专注于运行慢的地方进行优化。在其他地方,一点时间上的损失没有什么影响。
一、 避免全局变量
当编写脚本时,通常习惯了直接将其写为全局变量,但是,由于全局变量和局部变量实现方式不同,定义在全局范围内的代码运行速度会比定义在函数中的慢不少。通过将脚本语句放入到函数中,通常可带来 15% - 30% 的速度提升。
# 不推荐写法。代码耗时:26.8秒 import math size = 10000 for x in range(size): for y in range(size): z = math.sqrt(x) + math.sqrt(y)全局变量写法
# 推荐写法。代码耗时:20.6秒 import math def main(): # 定义到函数中,以减少全部变量使用 size = 10000 for x in range(size): for y in range(size): z = math.sqrt(x) + math.sqrt(y) main()变量放到函数体中
二、避免模块和函数属性访问
每次使用.
(属性访问操作符时)会触发特定的方法,如__getattribute__()
和__getattr__()
,这些方法会进行字典操作,因此会带来额外的时间开销。通过from import
语句,可以消除属性访问。
# 不推荐写法。代码耗时:14.5秒 import math def computeSqrt(size: int): result = [] for i in range(size): result.append(math.sqrt(i)) return result def main(): size = 10000 for _ in range(size): result = computeSqrt(size) main()不推荐的import写法
# 第一次优化写法。代码耗时:10.9秒 from math import sqrt def computeSqrt(size: int): result = [] for i in range(size): result.append(sqrt(i)) # 避免math.sqrt的使用 return result def main(): size = 10000 for _ in range(size): result = computeSqrt(size) main()改变import方式,可以提速
# 第二次优化写法。代码耗时:9.9秒 import math def computeSqrt(size: int): result = [] sqrt = math.sqrt # 赋值给局部变量 for i in range(size): result.append(sqrt(i)) # 避免math.sqrt的使用 return result def main(): size = 10000 for _ in range(size): result = computeSqrt(size) main()不改变import方式,但是改变用法,也可以提速
三、避免类内属性访问
避免.
的原则也适用于类内属性,访问 self._value
的速度会比访问一个局部变量更慢一些。通过将需要频繁访问的类内属性赋值给一个局部变量,可以提升代码运行速度。
# 不推荐写法。代码耗时:10.4秒 import math from typing import List class DemoClass: def __init__(self, value: int): self._value = value def computeSqrt(self, size: int) -> List[float]: result = [] append = result.append sqrt = math.sqrt for _ in range(size): append(sqrt(self._value)) return result def main(): size = 10000 for _ in range(size): demo_instance = DemoClass(size) result = demo_instance.computeSqrt(size) main()不推荐写法
# 推荐写法。代码耗时:8.0秒 import math from typing import List class DemoClass: def __init__(self, value: int): self._value = value def computeSqrt(self, size: int) -> List[float]: result = [] append = result.append sqrt = math.sqrt value = self._value for _ in range(size): append(sqrt(value)) # 避免 self._value 的使用 return result def main(): size = 10000 for _ in range(size): demo_instance = DemoClass(size) demo_instance.computeSqrt(size) main()推荐写法
四、避免不必要的抽象
当使用额外的处理层(比如装饰器、属性访问、描述器)去包装代码时,都会让代码变慢。大部分情况下,需要重新进行审视使用属性访问器的定义是否有必要,使用 getter/setter
函数对属性进行访问通常是 C/C++ 程序员遗留下来的代码风格。如果真的没有必要,就使用简单属性。
# 不推荐写法,代码耗时:0.55秒 class DemoClass: def __init__(self, value: int): self.value = value @property def value(self) -> int: return self._value @value.setter def value(self, x: int): self._value = x def main(): size = 1000000 for i in range(size): demo_instance = DemoClass(size) value = demo_instance.value demo_instance.value = i main()不推荐写法
# 推荐写法,代码耗时:0.33秒 class DemoClass: def __init__(self, value: int): self.value = value # 避免不必要的属性访问器 def main(): size = 1000000 for i in range(size): demo_instance = DemoClass(size) value = demo_instance.value demo_instance.value = i main()推荐写法
五、避免无意义的数据复制
5.1 不创建不必要的数据结构或复制
# 不推荐写法,代码耗时:6.5秒 def main(): size = 10000 for _ in range(size): value = range(size) value_list = [x for x in value] square_list = [x * x for x in value_list] main()不推荐写法
# 推荐写法,代码耗时:4.8秒 def main(): size = 10000 for _ in range(size): value = range(size) square_list = [x * x for x in value] # 避免无意义的复制 main()推荐写法
5.2 交换值时不使用中间变量
5.3 字符串拼接用join而不是+
当使用 a+b 拼接字符串时,由于 Python 中字符串是不可变对象,其会申请一块内存空间,将 a 和 b 分别复制到该新申请的内存空间中。因此,如果要拼接 n 个字符串,会产生 n-1 个中间结果,每产生一个中间结果都需要申请和复制一次内存,严重影响运行效率。而使用 join() 拼接字符串时,会首先计算出需要申请的总的内存空间,然后一次性地申请所需内存,并将每个字符串元素复制到该内存中去。
六、利用if条件的短路特性
if 条件的短路特性是指对 if a and b 这样的语句, 当 a 为 False 时将直接返回,不再计算 b;对于 if a or b 这样的语句,当 a 为 True 时将直接返回,不再计算 b。因此, 为了节约运行时间,对于 or 语句,应该将值为 True 可能性比较高的变量写在 or 前,而 and 应该推后。
七、循环优化
7.1 Python 的 for 循环比 while 循环快不少。
7.2 使用隐式for循环代替显式for循环
def computeSum(size: int) -> int: sum_ = 0 for i in range(size): # for 循环代替 while 循环 sum_ += i return sum_ def main(): size = 10000 for _ in range(size): sum_ = computeSum(size) main()普通写法
# 推荐写法。代码耗时:1.7秒 def computeSum(size: int) -> int: return sum(range(size)) # 隐式 for 循环代替显式 for 循环 def main(): size = 10000 for _ in range(size): sum = computeSum(size) main()隐式for循环
7.3 减少内层for循环的计算
# 不推荐写法。代码耗时:12.8秒 import math def main(): size = 10000 sqrt = math.sqrt for x in range(size): for y in range(size): z = sqrt(x) + sqrt(y) main()不推荐写法
# 推荐写法。代码耗时:7.0秒 import math def main(): size = 10000 sqrt = math.sqrt for x in range(size): sqrt_x = sqrt(x) # 减少内层 for 循环的计算 for y in range(size): z = sqrt_x + sqrt(y) main()推荐写法
八、使用numba.jit
我们沿用上面介绍过的例子,在此基础上使用 numba.jit。numba 可以将 Python 函数 JIT 编译为机器码执行,大大提高代码运行速度。关于 numba 的更多信息见下面的主页:http://numba.pydata.org/numba.pydata.org
# 推荐写法。代码耗时:0.62秒 import numba @numba.jit def computeSum(size: float) -> int: sum = 0 for i in range(size): sum += i return sum def main(): size = 10000 for _ in range(size): sum = computeSum(size) main()View Code
九、选择合适的数据结构
Python 内置的数据结构 str、tuple、list、dict 底层都是 C 实现的,速度非常快,自己实现新的数据结构想在性能上达到内置的速度几乎是不可能的。
list 类似于 C++ 中的 std::vector,是一种动态数组。其会预分配一定内存空间,当预分配的内存空间用完,又继续向其中添加元素时,会申请一块更大的内存空间,然后将原有的所有元素都复制过去,之后销毁之前的内存空间,再插入新元素。
删除元素时操作类似,当已使用内存空间比预分配内存空间的一半还少时,会另外申请一块小内存,做一次元素复制,之后销毁原有大内存空间。
因此,如果有频繁的新增、删除操作,新增、删除的元素数量又很多时,list 的效率不高。此时,应该考虑使用 collections.deque。collections.deque 是双端队列,同时具备栈和队列的特性,能够在两端进行 O(1) 复杂度的插入和删除操作。
list 的查找操作也非常耗时。当需要在 list 频繁查找某些元素,或频繁有序访问这些元素时,可以使用 bisect 维护 list 对象有序并在其中进行二分查找,提升查找的效率。
另外一个常见需求是查找极小值或极大值,此时可以使用 heapq 模块将 list 转化为一个堆,使得获取最小值的时间复杂度是 O(1)。
下面的网页给出了常用的 Python 数据结构的各项操作的时间复杂度:https://wiki.python.org/moin/TimeComplexity
参考:https://mp.weixin.qq.com/s/UAAK6rlavFYWy43OxZmDeA
这篇关于Python代码优化的几点思路总结的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-03用FastAPI掌握Python异步IO:轻松实现高并发网络请求处理
- 2025-01-02封装学习:Python面向对象编程基础教程
- 2024-12-28Python编程基础教程
- 2024-12-27Python编程入门指南
- 2024-12-27Python编程基础
- 2024-12-27Python编程基础教程
- 2024-12-27Python编程基础指南
- 2024-12-24Python编程入门指南
- 2024-12-24Python编程基础入门
- 2024-12-24Python编程基础:变量与数据类型