基于numpy用梯度上升法处理逻辑斯蒂回归
2021/8/18 23:09:52
本文主要是介绍基于numpy用梯度上升法处理逻辑斯蒂回归,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
import numpy as np import matplotlib.pyplot as plt w=700 w1=700 n=w1-50 train=np.random.randint(-300,300,(w,4)) train=train.astype(float) train_lable=np.zeros((w,1)) traint=train.astype(float) lam=100 for i in range(4): train[:,i]=(train[:,i]-train[:,i].mean())/train[:,i].std() for i in range(w): if 1*train[i,0]+2*train[i,1]+3*train[i,2]+4*train[i,3]-1>0: train_lable[i]=1 else: train_lable[i]=0 w=np.zeros(4) b=0 beta=1 for i in range(300): sum=np.zeros(5) for i1 in range(4): for i2 in range(w1-50): sum[i1]=sum[i1]+train_lable[i2]*train[i2,i1]-train[i2,i1]*np.exp(np.dot(w,train[i2])+b)/(1+np.exp(np.dot(w,train[i2])+b))-lam/n*w[i1] for i2 in range(w1-50): sum[4]=sum[4]+train_lable[i2]-np.exp(np.dot(w,train[i2])+b)/(1+np.exp(np.dot(w,train[i2])+b)) loss=0 for i2 in range(w1-50): loss=loss+train_lable[i2]*(np.dot(w,train[i2])+b)-np.log(1+np.exp(np.dot(w,train[i2])+b)) sum=sum/(w1-50) loss=loss/(w1-50)-lam/2/n*np.dot(w,w) if loss>=-0.9 and beta>=1: beta=beta/10 print(i,beta,loss,sum,w,b) for i1 in range(5): if i1==4: b=beta*sum[4]+b else: w[i1]=w[i1]+beta*sum[i1] acc=0 k=w1-50 for i in range(50): if(np.dot(w,train[i+k])+b>0): if train_lable[i+k]==1: acc+=1 else: if train_lable[i+k]==0: acc+=1 print(acc)这篇关于基于numpy用梯度上升法处理逻辑斯蒂回归的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-22项目:远程温湿度检测系统
- 2024-12-21《鸿蒙HarmonyOS应用开发从入门到精通(第2版)》简介
- 2024-12-21后台管理系统开发教程:新手入门全指南
- 2024-12-21后台开发教程:新手入门及实战指南
- 2024-12-21后台综合解决方案教程:新手入门指南
- 2024-12-21接口模块封装教程:新手必备指南
- 2024-12-21请求动作封装教程:新手必看指南
- 2024-12-21RBAC的权限教程:从入门到实践
- 2024-12-21登录鉴权实战:新手入门教程
- 2024-12-21动态权限实战入门指南