归一化z-score标准化
2021/8/20 23:10:30
本文主要是介绍归一化z-score标准化,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
z-score标准化
z-score标准化是将数据按比例缩放,使之落入一个特定区间。 要求:均值 μ = 0 ,σ = 1
标准差公式:
imagez-score标准化转换公式:
image归一化
归一化:把数变为(0,1)之间的小数
归一化公式:
image这里利用sklearn的MinMaxScaler和StandardScaler两个类,对所有数据进行归一化处理
import pandas as pd from sklearn import preprocessing from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler # 读取数据 features = ['accommodates','bedrooms','bathrooms','beds','price','minimum_nights','maximum_nights','number_of_reviews'] dc_listings = pd.read_csv(r'D:\codes_jupyter\数据分析_learning\课件\05_K近邻\listings.csv', engine='python') dc_listings = dc_listings[features] # 对price列进行一定的处理,使其变成float型 dc_listings['price'] = dc_listings.price.str.replace(r'\$|,', '').astype(float) # 对缺失值进行处理,删除有缺失值的数据 dc_listings = dc_listings.dropna() # 归一化 dc_listings[features] = MinMaxScaler().fit_transform(dc_listings) # 标准化 # dc_listings[features] = StandardScaler().fit_transform(dc_listings) print(dc_listings.shape) dc_listings.head()
输出结果如下:
image得到标准化的数据后,就可以利用多个指标对房租价格进行预测了。
作者:叫我老村长
链接:https://www.jianshu.com/p/26d198115908
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
这篇关于归一化z-score标准化的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-15在使用平台私钥进行解密时提示 "私钥解密失败" 错误信息是什么原因?-icode9专业技术文章分享
- 2024-11-15Layui框架有哪些方式引入?-icode9专业技术文章分享
- 2024-11-15Layui框架中有哪些减少对全局环境的污染方法?-icode9专业技术文章分享
- 2024-11-15laydate怎么关闭自动的日期格式校验功能?-icode9专业技术文章分享
- 2024-11-15laydate怎么取消初始日期校验?-icode9专业技术文章分享
- 2024-11-15SendGrid 的邮件发送时,怎么设置回复邮箱?-icode9专业技术文章分享
- 2024-11-15使用 SendGrid API 发送邮件后获取到唯一的请求 ID?-icode9专业技术文章分享
- 2024-11-15mailgun 发送邮件 tags标签最多有多少个?-icode9专业技术文章分享
- 2024-11-15mailgun 发送邮件 怎么批量发送给多个人?-icode9专业技术文章分享
- 2024-11-15如何搭建web开发环境并实现 web项目在浏览器中访问?-icode9专业技术文章分享