Linux MPI+CUDA混编

2021/8/26 7:07:17

本文主要是介绍Linux MPI+CUDA混编,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

Linux MPI+CUDA混编

源文件(main.cpp pi_cu.cu)

main.cpp

#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
#define NBIN 10000000 // Number of bins
#define NUM_BLOCK 13 // Number of thread blocks
#define NUM_THREAD 192 // Number of threads per block

// Kernel that executes on the CUDA device
void computePI(int nproc,int myid,float *sumHost,float step);

int main(int argc,char **argv) {
    int myid,nproc,tid, nbin;
    float pi=0.0, pig, step;
    float *sumHost;                        // Pointers to host arrays
    MPI_Init(&argc,&argv);
    MPI_Comm_rank(MPI_COMM_WORLD,&myid);  // My MPI rank
    MPI_Comm_size(MPI_COMM_WORLD,&nproc); // Number of MPI processes

    size_t size = NUM_BLOCK*NUM_THREAD*sizeof(float); //Array memory size
    sumHost = (float *)malloc(size);      // Allocate array on host
    nbin = NBIN/nproc;                    // Number of bins per MPI process
    step = 1.0/(float)(nbin*nproc);       // Step size with redefined number of bins
    computePI(nproc,myid,sumHost,step);

   /* Reduction over CUDA threads */
    for(tid=0; tid<NUM_THREAD*NUM_BLOCK; tid++) pi += sumHost[tid];
    printf("step = %11.7f\n", step);
    pi *=step;
    free(sumHost);
    printf("myid = %d: partial pi = %11.7f\n",myid, pi);

    /* Reduction over MPI processes */
    MPI_Allreduce(&pi,&pig,1,MPI_FLOAT,MPI_SUM,MPI_COMM_WORLD);
    if (myid==0) printf("PI = %11.7f\n",pig);
    MPI_Finalize();
    return 0;
}

pi_cu.cu

#include<stdio.h>
#include<stdlib.h>
#define NBIN 10000000 // Number of bins
#define NUM_BLOCK 13  // Number of thread blocks
#define NUM_THREAD 192 // Number of threads per block

 __global__ void cal_pi(float *sum,int nbin,float step,float offset,int nthreads,int nblocks)
{
    int i;
    float x;
    int idx = blockIdx.x*blockDim.x+threadIdx.x; // Sequential thread index across blocks
    for (i=idx; i< nbin; i+=nthreads*nblocks) { // Interleaved bin assignment to threads
        x = offset+(i+0.5)*step;
        sum[idx] += 4.0/(1.0+x*x);
    }
}

void computePI(int nproc,int myid, float *sumHost,float step)
{
 int nbin;
 float offset;
 float *sumDev;                  // Pointers to device arrays
 dim3 dimGrid(NUM_BLOCK,1,1);    // Grid dimensions (only use 1D)
 dim3 dimBlock(NUM_THREAD,1,1);  // Block dimensions (only use 1D)
 
 nbin = NBIN/nproc;              // Number of bins per MPI process
 offset = myid*step*nbin;        // Quadrature-point offset
 size_t size = NUM_BLOCK*NUM_THREAD*sizeof(float);   //Array memory size
 cudaMalloc((void **) &sumDev,size);                 // Allocate array on device
 cudaMemset(sumDev,0,size);                          // Reset array in device to 0

 /*  Calculate on device (call CUDA kernel)  */
 cal_pi <<<dimGrid,dimBlock>>> (sumDev,nbin,step,offset,NUM_THREAD,NUM_BLOCK);
 
 /* Retrieve result from device and store it in host array  */
 cudaMemcpy(sumHost,sumDev,size,cudaMemcpyDeviceToHost);
 
 cudaFree(sumDev);
}

使用bsub脚本提交作业

test.bsub

#BSUB -W 0:10
#BSUB -n 4
#BSUB -R "span[ptile=2]"
#BSUB -q "gpu"
#BSUB -o res.out
#BSUB -e out.err
 
module unload compiler
module load compiler/intel/composer_xe_2013_sp1.0.080
module unload mpi
module load mpi/mvapich2/1.9/intel
module unload cuda
module load cuda/6.0.37
module load
mpijob.mvapich2 ./gpu-pi

提交作业

    bsub < test.bsub

Makefile文件

all:gpu-pi

CFLAGS+=-O3
NVCCFLAGS+=-I/soft/cuda/6.0.37/samples/common/inc/  -I/soft/cuda/6.0.37/include
NVCCFLAGS+=-I/soft/mpi/mvapich2/1.9/intel/include/ -Wno-deprecated-gpu-targets
NVCCLIB+=-L/soft/cuda/6.0.37/lib64 -lcudart 

gpu-pi: main.o  pi_cu.o
	mpicc $^ -o gpu-pi $(NVCCLIB) -lm  
	bsub < test.bsub        
	
%.o:%.cpp
	mpicc $(NVCCFLAGS) $(CFLAGS) -o $@ -c $^  -lm

%.o:%.cu 
	nvcc  $(NVCCFLAGS) $(CFLAGS) -o $@ -c $^ 
clean:
	rm -fr *.o *.err *.out gpu-pi
  • .cu文件和 .cpp文件分别用 nvcc 和 mpicc 编译,注意编译时需要包含CUDA和MPI的include路径;
  • 用mpicc链接,注意加上cuda的库;
  • 如果不提交作业,直接用mpirun运行是得不到结果的,因为没有利用到GPU
[scatmstu1@login4 pi2]$ mpirun -np 4 ./gpu-pi
step =   0.0000001
myid = 0: partial pi =   0.0000000
step =   0.0000001
myid = 3: partial pi =   0.0000000
step =   0.0000001
myid = 1: partial pi =   0.0000000
step =   0.0000001
myid = 2: partial pi =   0.0000000
PI =   0.0000000
  • 正确的运行结果( cat res.out )
[scatmstu1@login4 pi2]$ cat res.out 
Your job looked like:
------------------------------------------------------------
# LSBATCH: User input
#BSUB -W 0:10
#BSUB -n 4
#BSUB -R "span[ptile=2]"
#BSUB -q "gpu"
#BSUB -o res.out
#BSUB -e out.err
 
module unload compiler
module load compiler/intel/composer_xe_2013_sp1.0.080
module unload mpi
module load mpi/mvapich2/1.9/intel
module unload cuda
module load cuda/6.0.37
module load
mpijob.mvapich2 ./gpu-pi
------------------------------------------------------------
Successfully completed.
Resource usage summary:

    CPU time   :      8.34 sec.
    Max Memory :         2 MB
    Max Swap   :        22 MB

    Max Processes  :         1

The output (if any) follows:

step =   0.0000001
myid = 0: partial pi =   0.9799146
step =   0.0000001
myid = 1: partial pi =   0.8746758
step =   0.0000001
myid = 2: partial pi =   0.7194140
step =   0.0000001
myid = 3: partial pi =   0.5675882
PI =   3.1415925

PS:
Read file <out.err> for stderr output of this job.


这篇关于Linux MPI+CUDA混编的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程