大数据Flink异步IO
2021/9/13 23:08:14
本文主要是介绍大数据Flink异步IO,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
目录
- 1 介绍
- 1.1 异步IO操作的需求
- 1.2 使用Aysnc I/O的前提条件
- 1.3 Async I/O API
- 2 案例演示
1 介绍
1.1 异步IO操作的需求
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/operators/asyncio.html
Async I/O 是阿里巴巴贡献给社区的一个呼声非常高的特性,于1.2版本引入。主要目的是为了解决与外部系统交互时网络延迟成为了系统瓶颈的问题。流计算系统中经常需要与外部系统进行交互,我们通常的做法如向数据库发送用户a的查询请求,然后等待结果返回,在这之前,我们的程序无法发送用户b的查询请求。这是一种同步访问方式,
如下图所示
⚫ 左图所示:通常实现方式是向数据库发送用户a的查询请求(例如在MapFunction中),然后等待结果返回,在这之前,我们无法发送用户b的查询请求,这是一种同步访问的模式,图中棕色的长条标识等待时间,可以发现网络等待时间极大的阻碍了吞吐和延迟
⚫ 右图所示:为了解决同步访问的问题,异步模式可以并发的处理多个请求和回复,可以连续的向数据库发送用户a、b、c、d等的请求,与此同时,哪个请求的回复先返回了就处理哪个回复,从而连续的请求之间不需要阻塞等待,这也正是Async I/O的实现原理。
1.2 使用Aysnc I/O的前提条件
⚫ 数据库(或key/value存储系统)提供支持异步请求的client。(如java的vertx)
⚫ 没有异步请求客户端的话也可以将同步客户端丢到线程池中执行作为异步客户端
1.3 Async I/O API
Async I/O API允许用户在数据流中使用异步客户端访问外部存储,该API处理与数据流的集成,以及消息顺序性(Order),事件时间(EventTime),一致性(容错)等脏活累活,用户只专注于业务
如果目标数据库中有异步客户端,则三步即可实现异步流式转换操作(针对该数据库的异步):
⚫ 实现用来分发请求的AsyncFunction,用来向数据库发送异步请求并设置回调
⚫ 获取操作结果的callback,并将它提交给ResultFuture
⚫ 将异步I/O操作应用于DataStream
2 案例演示
https://blog.csdn.net/weixin_41608066/article/details/105957940
⚫ 需求:
使用异步IO实现从MySQL中读取数据
⚫ 数据准备:
DROP TABLE IF EXISTS `t_category`; CREATE TABLE `t_category` ( `id` int(11) NOT NULL, `name` varchar(255) DEFAULT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8; -- ---------------------------- -- Records of t_category -- ---------------------------- INSERT INTO `t_category` VALUES ('1', '手机'); INSERT INTO `t_category` VALUES ('2', '电脑'); INSERT INTO `t_category` VALUES ('3', '服装'); INSERT INTO `t_category` VALUES ('4', '化妆品'); INSERT INTO `t_category` VALUES ('5', '食品');
⚫ 代码演示
package cn.oldlu.extend; import io.vertx.core.AsyncResult; import io.vertx.core.Handler; import io.vertx.core.Vertx; import io.vertx.core.VertxOptions; import io.vertx.core.json.JsonObject; import io.vertx.ext.jdbc.JDBCClient; import io.vertx.ext.sql.SQLClient; import io.vertx.ext.sql.SQLConnection; import lombok.AllArgsConstructor; import lombok.Data; import lombok.NoArgsConstructor; import org.apache.flink.configuration.Configuration; import org.apache.flink.streaming.api.datastream.AsyncDataStream; import org.apache.flink.streaming.api.datastream.DataStreamSource; import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.api.functions.async.ResultFuture; import org.apache.flink.streaming.api.functions.async.RichAsyncFunction; import org.apache.flink.streaming.api.functions.source.RichSourceFunction; import java.sql.*; import java.util.Collections; import java.util.List; import java.util.concurrent.ExecutorService; import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.ThreadPoolExecutor; import java.util.concurrent.TimeUnit; /** * 使用异步io的先决条件 * 1.数据库(或key/value存储)提供支持异步请求的client。 * 2.没有异步请求客户端的话也可以将同步客户端丢到线程池中执行作为异步客户端。 */ public class ASyncIODemo { public static void main(String[] args) throws Exception { //1.env StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //2.Source //DataStreamSource[1,2,3,4,5] DataStreamSource<CategoryInfo> categoryDS = env.addSource(new RichSourceFunction<CategoryInfo>() { private Boolean flag = true; @Override public void run(SourceContext<CategoryInfo> ctx) throws Exception { Integer[] ids = {1, 2, 3, 4, 5}; for (Integer id : ids) { ctx.collect(new CategoryInfo(id, null)); } } @Override public void cancel() { this.flag = false; } }); //3.Transformation //方式一:Java-vertx中提供的异步client实现异步IO //unorderedWait无序等待 SingleOutputStreamOperator<CategoryInfo> result1 = AsyncDataStream .unorderedWait(categoryDS, new ASyncIOFunction1(), 1000, TimeUnit.SECONDS, 10); //方式二:MySQL中同步client+线程池模拟异步IO //unorderedWait无序等待 SingleOutputStreamOperator<CategoryInfo> result2 = AsyncDataStream .unorderedWait(categoryDS, new ASyncIOFunction2(), 1000, TimeUnit.SECONDS, 10); //4.Sink result1.print("方式一:Java-vertx中提供的异步client实现异步IO \n"); result2.print("方式二:MySQL中同步client+线程池模拟异步IO \n"); //5.execute env.execute(); } } @Data @NoArgsConstructor @AllArgsConstructor class CategoryInfo { private Integer id; private String name; } class MysqlSyncClient { private static transient Connection connection; private static final String JDBC_DRIVER = "com.mysql.jdbc.Driver"; private static final String URL = "jdbc:mysql://localhost:3306/bigdata"; private static final String USER = "root"; private static final String PASSWORD = "root"; static { init(); } private static void init() { try { Class.forName(JDBC_DRIVER); } catch (ClassNotFoundException e) { System.out.println("Driver not found!" + e.getMessage()); } try { connection = DriverManager.getConnection(URL, USER, PASSWORD); } catch (SQLException e) { System.out.println("init connection failed!" + e.getMessage()); } } public void close() { try { if (connection != null) { connection.close(); } } catch (SQLException e) { System.out.println("close connection failed!" + e.getMessage()); } } public CategoryInfo query(CategoryInfo category) { try { String sql = "select id,name from t_category where id = "+ category.getId(); Statement statement = connection.createStatement(); ResultSet rs = statement.executeQuery(sql); if (rs != null && rs.next()) { category.setName(rs.getString("name")); } } catch (SQLException e) { System.out.println("query failed!" + e.getMessage()); } return category; } } /** * 方式一:Java-vertx中提供的异步client实现异步IO */ class ASyncIOFunction1 extends RichAsyncFunction<CategoryInfo, CategoryInfo> { private transient SQLClient mySQLClient; @Override public void open(Configuration parameters) throws Exception { JsonObject mySQLClientConfig = new JsonObject(); mySQLClientConfig .put("driver_class", "com.mysql.jdbc.Driver") .put("url", "jdbc:mysql://localhost:3306/bigdata") .put("user", "root") .put("password", "root") .put("max_pool_size", 20); VertxOptions options = new VertxOptions(); options.setEventLoopPoolSize(10); options.setWorkerPoolSize(20); Vertx vertx = Vertx.vertx(options); //根据上面的配置参数获取异步请求客户端 mySQLClient = JDBCClient.createNonShared(vertx, mySQLClientConfig); } //使用异步客户端发送异步请求 @Override public void asyncInvoke(CategoryInfo input, ResultFuture<CategoryInfo> resultFuture) throws Exception { mySQLClient.getConnection(new Handler<AsyncResult<SQLConnection>>() { @Override public void handle(AsyncResult<SQLConnection> sqlConnectionAsyncResult) { if (sqlConnectionAsyncResult.failed()) { return; } SQLConnection connection = sqlConnectionAsyncResult.result(); connection.query("select id,name from t_category where id = " +input.getId(), new Handler<AsyncResult<io.vertx.ext.sql.ResultSet>>() { @Override public void handle(AsyncResult<io.vertx.ext.sql.ResultSet> resultSetAsyncResult) { if (resultSetAsyncResult.succeeded()) { List<JsonObject> rows = resultSetAsyncResult.result().getRows(); for (JsonObject jsonObject : rows) { CategoryInfo categoryInfo = new CategoryInfo(jsonObject.getInteger("id"), jsonObject.getString("name")); resultFuture.complete(Collections.singletonList(categoryInfo)); } } } }); } }); } @Override public void close() throws Exception { mySQLClient.close(); } @Override public void timeout(CategoryInfo input, ResultFuture<CategoryInfo> resultFuture) throws Exception { System.out.println("async call time out!"); input.setName("未知"); resultFuture.complete(Collections.singleton(input)); } } /** * 方式二:同步调用+线程池模拟异步IO */ class ASyncIOFunction2 extends RichAsyncFunction<CategoryInfo, CategoryInfo> { private transient MysqlSyncClient client; private ExecutorService executorService;//线程池 @Override public void open(Configuration parameters) throws Exception { super.open(parameters); client = new MysqlSyncClient(); executorService = new ThreadPoolExecutor(10, 10, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>()); } //异步发送请求 @Override public void asyncInvoke(CategoryInfo input, ResultFuture<CategoryInfo> resultFuture) throws Exception { executorService.execute(new Runnable() { @Override public void run() { resultFuture.complete(Collections.singletonList((CategoryInfo) client.query(input))); } }); } @Override public void close() throws Exception { } @Override public void timeout(CategoryInfo input, ResultFuture<CategoryInfo> resultFuture) throws Exception { System.out.println("async call time out!"); input.setName("未知"); resultFuture.complete(Collections.singleton(input)); } }
⚫ 异步IO读取Redis数据
package cn.oldlu.extend; import io.vertx.core.Vertx; import io.vertx.core.VertxOptions; import io.vertx.redis.RedisClient; import io.vertx.redis.RedisOptions; import org.apache.flink.configuration.Configuration; import org.apache.flink.streaming.api.TimeCharacteristic; import org.apache.flink.streaming.api.datastream.AsyncDataStream; import org.apache.flink.streaming.api.datastream.DataStreamSource; import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.api.functions.async.ResultFuture; import org.apache.flink.streaming.api.functions.async.RichAsyncFunction; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import redis.clients.jedis.Jedis; import redis.clients.jedis.JedisPool; import redis.clients.jedis.JedisPoolConfig; import java.util.Collections; import java.util.concurrent.CompletableFuture; import java.util.concurrent.TimeUnit; import java.util.function.Supplier; /** 使用异步IO访问redis hset AsyncReadRedis beijing 1 hset AsyncReadRedis shanghai 2 hset AsyncReadRedis guangzhou 3 hset AsyncReadRedis shenzhen 4 hset AsyncReadRedis hangzhou 5 hset AsyncReadRedis wuhan 6 hset AsyncReadRedis chengdu 7 hset AsyncReadRedis tianjin 8 hset AsyncReadRedis chongqing 9 city.txt 1,beijing 2,shanghai 3,guangzhou 4,shenzhen 5,hangzhou 6,wuhan 7,chengdu 8,tianjin 9,chongqing */ public class AsyncIODemo_Redis { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); DataStreamSource<String> lines = env.readTextFile("data/input/city.txt"); SingleOutputStreamOperator<String> result1 = AsyncDataStream.orderedWait(lines, new AsyncRedis(), 10, TimeUnit.SECONDS, 1); SingleOutputStreamOperator<String> result2 = AsyncDataStream.orderedWait(lines, new AsyncRedisByVertx(), 10, TimeUnit.SECONDS, 1); result1.print().setParallelism(1); result2.print().setParallelism(1); env.execute(); } } /** * 使用异步的方式读取redis的数据 */ class AsyncRedis extends RichAsyncFunction<String, String> { //定义redis的连接池对象 private JedisPoolConfig config = null; private static String ADDR = "localhost"; private static int PORT = 6379; //等待可用连接的最大时间,单位是毫秒,默认是-1,表示永不超时,如果超过等待时间,则会抛出异常 private static int TIMEOUT = 10000; //定义redis的连接池实例 private JedisPool jedisPool = null; //定义连接池的核心对象 private Jedis jedis = null; //初始化redis的连接 @Override public void open(Configuration parameters) throws Exception { super.open(parameters); //定义连接池对象属性配置 config = new JedisPoolConfig(); //初始化连接池对象 jedisPool = new JedisPool(config, ADDR, PORT, TIMEOUT); //实例化连接对象(获取一个可用的连接) jedis = jedisPool.getResource(); } @Override public void close() throws Exception { super.close(); if(jedis.isConnected()){ jedis.close(); } } //异步调用redis @Override public void asyncInvoke(String input, ResultFuture<String> resultFuture) throws Exception { System.out.println("input:"+input); //发起一个异步请求,返回结果 CompletableFuture.supplyAsync(new Supplier<String>() { @Override public String get() { String[] arrayData = input.split(","); String name = arrayData[1]; String value = jedis.hget("AsyncReadRedis", name); System.out.println("output:"+value); return value; } }).thenAccept((String dbResult)->{ //设置请求完成时的回调,将结果返回 resultFuture.complete(Collections.singleton(dbResult)); }); } //连接超时的时候调用的方法,一般在该方法中输出连接超时的错误日志,如果不重新该方法,连接超时后会抛出异常 @Override public void timeout(String input, ResultFuture<String> resultFuture) throws Exception { System.out.println("redis connect timeout!"); } } /** * 使用高性能异步组件vertx实现类似于连接池的功能,效率比连接池要高 * 1)在java版本中可以直接使用 * 2)如果在scala版本中使用的话,需要scala的版本是2.12+ */ class AsyncRedisByVertx extends RichAsyncFunction<String,String> { //用transient关键字标记的成员变量不参与序列化过程 private transient RedisClient redisClient; //获取连接池的配置对象 private JedisPoolConfig config = null; //获取连接池 JedisPool jedisPool = null; //获取核心对象 Jedis jedis = null; //Redis服务器IP private static String ADDR = "localhost"; //Redis的端口号 private static int PORT = 6379; //访问密码 private static String AUTH = "XXXXXX"; //等待可用连接的最大时间,单位毫秒,默认值为-1,表示永不超时。如果超过等待时间,则直接抛出JedisConnectionException; private static int TIMEOUT = 10000; private static final Logger logger = LoggerFactory.getLogger(AsyncRedis.class); //初始化连接 @Override public void open(Configuration parameters) throws Exception { super.open(parameters); config = new JedisPoolConfig(); jedisPool = new JedisPool(config, ADDR, PORT, TIMEOUT); jedis = jedisPool.getResource(); RedisOptions config = new RedisOptions(); config.setHost(ADDR); config.setPort(PORT); VertxOptions vo = new VertxOptions(); vo.setEventLoopPoolSize(10); vo.setWorkerPoolSize(20); Vertx vertx = Vertx.vertx(vo); redisClient = RedisClient.create(vertx, config); } //数据异步调用 @Override public void asyncInvoke(String input, ResultFuture<String> resultFuture) throws Exception { System.out.println("input:"+input); String[] split = input.split(","); String name = split[1]; // 发起一个异步请求 redisClient.hget("AsyncReadRedis", name, res->{ if(res.succeeded()){ String result = res.result(); if(result== null){ resultFuture.complete(null); return; } else { // 设置请求完成时的回调: 将结果传递给 collector resultFuture.complete(Collections.singleton(result)); } }else if(res.failed()) { resultFuture.complete(null); return; } }); } @Override public void timeout(String input, ResultFuture resultFuture) throws Exception { } @Override public void close() throws Exception { super.close(); if (redisClient != null) { redisClient.close(null); } } }
这篇关于大数据Flink异步IO的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-1333 张高清大图,带你玩转 KubeSphere 4.1.2 部署与扩展组件安装
- 2024-11-11Spark 新作《循序渐进 Spark 大数据应用开发》简介
- 2024-11-11KubeSphere 社区双周报| 2024.10.25-11.07
- 2024-11-11云原生周刊:Istio 1.24.0 正式发布
- 2024-11-10一个故事,为你理清云开发服务的选择思路
- 2024-11-09Sentinel监控流量资料:新手入门指南
- 2024-11-09Sentinel监控流量资料:新手入门教程
- 2024-11-08阿里云部署方案项目实战:新手入门教程
- 2024-11-08阿里云RDS项目实战教程
- 2024-11-08阿里云部署方案资料详解与实战教程