每日一道leetcode(python)1143. 最长公共子序列
2021/9/14 20:35:12
本文主要是介绍每日一道leetcode(python)1143. 最长公共子序列,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
每日一道leetcode(python)1143. 最长公共子序列
2021-09-14
给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。 一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。 例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。 两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。 示例 1: 输入:text1 = "abcde", text2 = "ace" 输出:3 解释:最长公共子序列是 "ace" ,它的长度为 3 。 示例 2: 输入:text1 = "abc", text2 = "abc" 输出:3 解释:最长公共子序列是 "abc" ,它的长度为 3 。 示例 3: 输入:text1 = "abc", text2 = "def" 输出:0 解释:两个字符串没有公共子序列,返回 0 。 提示: 1 <= text1.length, text2.length <= 1000 text1 和 text2 仅由小写英文字符组成。 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/longest-common-subsequence 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
动态规划
class Solution: def longestCommonSubsequence(self, text1: str, text2: str) -> int: m = len(text1) n = len(text2) dp = [[0] * (n + 1) for _ in range(m + 1)] for i in range(1, m+1): for j in range(1, n+1): if text1[i-1] == text2[j-1]: dp[i][j] = dp[i-1][j-1] + 1 else: dp[i][j] = max(dp[i][j-1],dp[i-1][j]) return dp[-1][-1]
这篇关于每日一道leetcode(python)1143. 最长公共子序列的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-03用FastAPI掌握Python异步IO:轻松实现高并发网络请求处理
- 2025-01-02封装学习:Python面向对象编程基础教程
- 2024-12-28Python编程基础教程
- 2024-12-27Python编程入门指南
- 2024-12-27Python编程基础
- 2024-12-27Python编程基础教程
- 2024-12-27Python编程基础指南
- 2024-12-24Python编程入门指南
- 2024-12-24Python编程基础入门
- 2024-12-24Python编程基础:变量与数据类型