利用python爬取某宝热卖网站商品信息(爬虫之路,永无止境!)
2021/9/16 17:10:20
本文主要是介绍利用python爬取某宝热卖网站商品信息(爬虫之路,永无止境!),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
代码操作展示:
开发环境:
windows10
python3.6
开发工具:
pycharm
chromedriver
库:
selenium、os、csv
很多人学习python,不知道从何学起。 很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手。 很多已经做案例的人,却不知道如何去学习更加高深的知识。 那么针对这三类人,我给大家提供一个好的学习平台,免费领取视频教程,电子书籍,以及课程的源代码! QQ群:701698587 欢迎加入,一起讨论 一起学习!
代码全解
安装插件
首先要安装webdriver插件,本文以谷歌浏览器为例,点开谷歌浏览器,点击右上角三个点,然后点击帮助,然后点击关于Google Chrome,查看浏览器的版本,然后点击网址
http://npm.taobao.org/mirrors/chromedriver
寻找自己浏览器对应的版本进行下载,下载之后将chromedriver.exe的文件最好放在你python解释器的同级目录下
本文采用自动化获取商品信息
start_url = 'https://uland.taobao.com/sem/tbsearch?refpid=mm_26632258_3504122_32538762&keyword=&clk1=b563659abe93a96a4e4c136b8d38b209&upsId=b563659abe93a96a4e4c136b8d38b209&spm=a2e0b.20350158.31919782.1&pnum=0’
1.打开网址是这样的
2.在搜索框中输入要搜索的商品名称,并点击搜索
self.driver.find_element_by_id('J_search_key').send_keys(self.keyword) self.driver.find_element_by_class_name('submit').click()
3.跳转网页之后,进行鼠标自动化滚轮操作
for i in range(1, 11): js = r'scrollTo(0, {})'.format(600 * i) self.driver.execute_script(js) time.sleep(1)
4.解析得到商品数据
li_list = self.driver.find_elements_by_xpath('//div[@class="lego-pc-search-list pc-search-list"]/ul') for li in li_list: name = li.find_elements_by_xpath(r'//li[@class="pc-items-item item-undefined"]/a/div[' r'@class="pc-items-item-title pc-items-item-title-row2"]/span') price = li.find_elements_by_xpath(r'//li[@class="pc-items-item item-undefined"]/a/div[' r'@class="price-con"]/span[2]') xiaoliang = li.find_elements_by_xpath(r'li[@class="pc-items-item item-undefined"]/a/div[' r'@class="item-footer"]/div[2]') vendor = li.find_elements_by_xpath(r'//*[@id="mx_5"]/ul/li/a/div[3]/div') link = li.find_elements_by_xpath(r'//li[@class="pc-items-item item-undefined"]/a')
5.保存数据
with open(r'./{}/{}.csv'.format('商品信息数据', self.file_name), 'a+', newline='', encoding='gbk') as file_csv: csv_writer = csv.writer(file_csv, delimiter=',') csv_writer.writerow([name, price, xiaoliang, vendor, link]) print(r'***商品数据保存成功:{}'.format(name))
6.定位翻页,翻页之后进行滚轮操作
self.driver.find_element_by_xpath(r'//*[@id="J_pc-search-page-nav"]/span[3]').click() self.mouse_scroll()
7.实现主要逻辑
self.create_dir() self.get_next_page()
源码展示:
# !/usr/bin/nev python # -*-coding:utf8-*- import time, os, csv, datetime from selenium import webdriver class TBSpider(object): def __init__(self): self.count = 1 self.keyword = input(r'请输入要查询的淘宝商品信息名称:') self.file_name = self.keyword + datetime.datetime.now().strftime('%Y-%m-%d') self.driver = webdriver.Chrome(executable_path=r'chromedriver.exe的路径') def create_dir(self): ''' 创建文件夹 ''' if not os.path.exists(r'./{}'.format('商品信息数据')): os.mkdir(r'./{}'.format('商品信息数据')) self.write_header() def write_header(self): ''' 写入csv头部信息 ''' if not os.path.exists(r'./{}.csv'.format(r'***商品数据保存成功:{}'.format(self.keyword))): csv_header = ['商品名称', '商品价格', '销量', '商品店铺', '商品链接'] with open(r'./{}/{}.csv'.format('商品信息数据', self.file_name), 'w', newline='', encoding='gbk') as file_csv: csv_writer_header = csv.DictWriter(file_csv, csv_header) csv_writer_header.writeheader() self.request_start_url() def request_start_url(self): ''' 请求起始url ''' self.driver.get('https://uland.taobao.com/sem/tbsearch?refpid=mm_26632258_3504122_32538762&keyword=&clk1=b563659abe93a96a4e4c136b8d38b209&upsId=b563659abe93a96a4e4c136b8d38b209&spm=a2e0b.20350158.31919782.1&pnum=0') self.driver.maximize_window() self.driver.implicitly_wait(10) self.search_goods() def search_goods(self): ''' 输入商品关键字 ''' print('\n' + r'----------------正在搜索商品信息:{}--------------------'.format(self.keyword) + '\n') self.driver.find_element_by_id('J_search_key').send_keys(self.keyword) self.driver.find_element_by_class_name('submit').click() time.sleep(3) self.mouse_scroll() def mouse_scroll(self): ''' 鼠标滑轮滚动,实现懒加载过程 ''' print(r'----------------正在请求第{}页数据--------------------'.format(self.count) + '\n') for i in range(1, 11): js = r'scrollTo(0, {})'.format(600 * i) # js = 'document.documentElement.scrollTop = document.documentElement.scrollHeight * %s' % (i / 20) self.driver.execute_script(js) time.sleep(1) self.get_goods_info() def get_goods_info(self): ''' 解析得到商品信息字段 ''' li_list = self.driver.find_elements_by_xpath('//div[@class="lego-pc-search-list pc-search-list"]/ul') for li in li_list: name = li.find_elements_by_xpath(r'//li[@class="pc-items-item item-undefined"]/a/div[' r'@class="pc-items-item-title pc-items-item-title-row2"]/span') price = li.find_elements_by_xpath(r'//li[@class="pc-items-item item-undefined"]/a/div[' r'@class="price-con"]/span[2]') xiaoliang = li.find_elements_by_xpath(r'li[@class="pc-items-item item-undefined"]/a/div[' r'@class="item-footer"]/div[2]') vendor = li.find_elements_by_xpath(r'//*[@id="mx_5"]/ul/li/a/div[3]/div') link = li.find_elements_by_xpath(r'//li[@class="pc-items-item item-undefined"]/a') for a, b, c, d, e in zip(name, price, xiaoliang, vendor, link): f = a.text g = b.text h = c.text i = d.text.replace('', '') j = e.get_attribute('href') self.save_data(f, g, h, i, j) def save_data(self, name, price, xiaoliang, vendor, link): ''' 写入csv文件主体信息 ''' try: with open(r'./{}/{}.csv'.format('商品信息数据', self.file_name), 'a+', newline='', encoding='gbk') as file_csv: csv_writer = csv.writer(file_csv, delimiter=',') csv_writer.writerow([name, price, xiaoliang, vendor, link]) print(r'***商品数据保存成功:{}'.format(name)) except Exception as e: pass def get_next_page(self): ''' 实现循环请求 ''' time.sleep(4) for index in range(2, 101): print(r'----------------第{}页数据保存完成--------------------'.format(self.count) + '\n') time.sleep(4) self.count += 1 if index <= 100: self.driver.find_element_by_xpath(r'//*[@id="J_pc-search-page-nav"]/span[3]').click() self.mouse_scroll() else: print('\n' + r'---------------所有商品数据保存完成------------------') break def main(self): ''' 实现主要逻辑 ''' self.create_dir() self.get_next_page() print('\n' + r'-------------文件保存成功------------------') if __name__ == '__main__': tb = TBSpider() tb.main()
这篇关于利用python爬取某宝热卖网站商品信息(爬虫之路,永无止境!)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-24Python编程基础详解
- 2024-11-21Python编程基础教程
- 2024-11-20Python编程基础与实践
- 2024-11-20Python编程基础与高级应用
- 2024-11-19Python 基础编程教程
- 2024-11-19Python基础入门教程
- 2024-11-17在FastAPI项目中添加一个生产级别的数据库——本地环境搭建指南
- 2024-11-16`PyMuPDF4LLM`:提取PDF数据的神器
- 2024-11-16四种数据科学Web界面框架快速对比:Rio、Reflex、Streamlit和Plotly Dash
- 2024-11-14获取参数学习:Python编程入门教程