0.618法(最优化方法)Python实现

2021/9/26 20:40:48

本文主要是介绍0.618法(最优化方法)Python实现,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

def f(x):
    return x ** 3 - 2 * x + 1


def solve(a, b, epsilon):
    p = a + 0.382 * (b - a)
    q = a + 0.618 * (b - a)
    phip = f(p)
    phiq = f(q)
    while True:
        if phip <= phiq:
            if abs(b - p) <= epsilon:
                return a, q
                break
            else:
                b = q
                phiq = phip
                q = p
                p = a + 0.382 * (b - a)
                phip = f(p)
        if phip > phiq:
            if abs(b - p) <= epsilon:
                return p, b
                break
            else:
                a = p
                phip = phiq
                p = q
                q = a + 0.618 * (b - a)
                phiq = f(q)


if __name__ == '__main__':
    a, b = solve(0, 3, 5e-10)
    print('a: {}\nb: {}\nf((a+b)/2): {}'.format(a, b, f((a + b) / 2)))



这篇关于0.618法(最优化方法)Python实现的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程