0.618法(最优化方法)Python实现
2021/9/26 20:40:48
本文主要是介绍0.618法(最优化方法)Python实现,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
def f(x): return x ** 3 - 2 * x + 1 def solve(a, b, epsilon): p = a + 0.382 * (b - a) q = a + 0.618 * (b - a) phip = f(p) phiq = f(q) while True: if phip <= phiq: if abs(b - p) <= epsilon: return a, q break else: b = q phiq = phip q = p p = a + 0.382 * (b - a) phip = f(p) if phip > phiq: if abs(b - p) <= epsilon: return p, b break else: a = p phip = phiq p = q q = a + 0.618 * (b - a) phiq = f(q) if __name__ == '__main__': a, b = solve(0, 3, 5e-10) print('a: {}\nb: {}\nf((a+b)/2): {}'.format(a, b, f((a + b) / 2)))
这篇关于0.618法(最优化方法)Python实现的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-26Python基础编程
- 2024-11-25Python编程基础:变量与类型
- 2024-11-25Python编程基础与实践
- 2024-11-24Python编程基础详解
- 2024-11-21Python编程基础教程
- 2024-11-20Python编程基础与实践
- 2024-11-20Python编程基础与高级应用
- 2024-11-19Python 基础编程教程
- 2024-11-19Python基础入门教程
- 2024-11-17在FastAPI项目中添加一个生产级别的数据库——本地环境搭建指南