《啊哈算法》——图
2021/9/29 22:13:03
本文主要是介绍《啊哈算法》——图,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
啊哈算法——图
深度和广度优先究竟是啥
DFS深度优先
首先以一个未被访问过的顶点作为起始顶点,沿当前顶点的边走到未访问过的顶点;当没有未访问过的顶点时,则回到上一个顶点,继续试探访问别的顶点,直到所有的顶点都被访问
package ch5; import javax.swing.plaf.synth.SynthEditorPaneUI; import java.util.Scanner; public class TUDFS { static int[] book = new int[100]; static int[][] e= new int[100][100]; static int sum = 0; static int n; public static void dfs(int cur){//cur代表当前顶点的编号 System.out.println(cur); sum++;//访问每一个顶点,就+1 if(sum == n) return;//所有的顶点都遍历完,直接退出 for (int i = 1; i<= n; i++){ //判断当前顶点cur到顶点i是否有边,判断顶点i是否呗访问过 if (e[cur][i] ==1 && book[i]==0){ book[i] = 1; dfs(i);//从顶点i继续出发遍历 } } } public static void main(String[] args) { int m,a,b; //初始化二维矩阵 Scanner scanner = new Scanner(System.in); n = scanner.nextInt(); m = scanner.nextInt(); //初始化矩阵 for (int i = 1; i<=n;i++){ for (int j=1;j<=m;j++){ if(i == j) e[i][j] = 0; else e[i][j] = Integer.MIN_VALUE; } } //读入顶点之间的边 for (int i =1; i<=m ;i++){ a =scanner.nextInt(); b =scanner.nextInt(); e[a][b] = 1; e[b][a] = 1; } //从一号顶点开始出发 book[1] = 1; dfs(1); scanner.close(); } }
BFS广度优先
首先以一个未被访问过的顶点作为起点,访问其所有相邻的顶点,然后对每个相邻的顶点,再访问他们相邻的未被访问过的顶点,直到所有顶点都被访问过,遍历结束。
package ch5; import java.util.LinkedList; import java.util.Queue; import java.util.Scanner; public class TUBFS { static int[] book = new int[100]; static int[][] e = new int[100][100]; static int[] queue = new int[100]; static int n; //双指针 static int head = 1,tail = 1;//定义首部和尾部 public static void main(String[] args) { int m,a,b; //初始化二维矩阵 Scanner scanner = new Scanner(System.in); n = scanner.nextInt(); m = scanner.nextInt(); //初始化矩阵 for (int i = 1; i<=n;i++){ for (int j=1;j<=m;j++){ if(i == j) e[i][j] = 0; else e[i][j] = Integer.MIN_VALUE; } } //读入顶点之间的边 for (int i =1; i<=m ;i++){ a =scanner.nextInt(); b =scanner.nextInt(); e[a][b] = 1; e[b][a] = 1; } //从一号队列出发 queue[1] = 1; tail ++; book[1] = 1; while(head < tail&& tail <= n){ int cur = queue[head]; for (int i=1;i<=n;i++){ if (e[cur][i] == 1 && book[i] == 0){ queue[tail] = i; tail ++; book[i] = 1; } if(tail >n) break; } head++; } for (int i=1;i<=n;i++){ System.out.println(queue[i]); } } }
城市地图—图的深度优先遍历
package ch5; import java.util.LinkedList; import java.util.Queue; import java.util.Scanner; public class TUBFS { static int[] book = new int[100]; static int[][] e = new int[100][100]; static int[] queue = new int[100]; static int n; //双指针 static int head = 1,tail = 1;//定义首部和尾部 public static void main(String[] args) { int m,a,b; //初始化二维矩阵 Scanner scanner = new Scanner(System.in); n = scanner.nextInt(); m = scanner.nextInt(); //初始化矩阵 for (int i = 1; i<=n;i++){ for (int j=1;j<=m;j++){ if(i == j) e[i][j] = 0; else e[i][j] = Integer.MIN_VALUE; } } //读入顶点之间的边 for (int i =1; i<=m ;i++){ a =scanner.nextInt(); b =scanner.nextInt(); e[a][b] = 1; e[b][a] = 1; } //从一号队列出发 queue[1] = 1; tail ++; book[1] = 1; while(head < tail&& tail <= n){ int cur = queue[head]; for (int i=1;i<=n;i++){ if (e[cur][i] == 1 && book[i] == 0){ queue[tail] = i; tail ++; book[i] = 1; } if(tail >n) break; } head++; } for (int i=1;i<=n;i++){ System.out.println(queue[i]); } } }
小结
图的概念
图就是有N个顶点和M条边组成的集合
有向图和无向图
有向图:如果给图的每一条边规定一个方向,那么得到的图称为有向图,其边也称有向边。在有向图中,与一个点相关联的边有出边和入边支付,而与一个有向边关联的两个点也有始点和终点之分。
无向图:边没有方向的图称为无向图
无向图的代码
package ch5; import java.util.Scanner; public class CityMapDFS2 { static int min = Integer.MAX_VALUE;//设定一个最小值 static int destination; static int[][] e = new int[100][100]; static int[] book = new int[100]; public static void DFS(int cur,int dis){ if(dis > min)return; if (cur == destination) { if (dis < min) min = dis; return; } for (int j = 1; j<=destination;j++) { //判断当前城市cur到城市j是否有路,并判断当前城市是否已经在走过的路中 if (e[cur][j] != Integer.MAX_VALUE && book[j] == 0){ book[j] = 1; DFS(j,dis+e[cur][j]);//从j城市继续出发遍历 book[j] = 0;//退回到前一步的探索,取消对j的标记 } } } public static void main(String[] args) { int a,b,c; Scanner scanner = new Scanner(System.in); destination = scanner.nextInt(); int m =scanner.nextInt(); for (int i=1;i<=destination;i++){ for (int j =1; j<=destination;j++){ if (i==j) e[i][j] = 0; else e[i][j] = Integer.MAX_VALUE; } } for (int i=1; i<=m;i++){ a = scanner.nextInt(); b = scanner.nextInt(); c = scanner.nextInt(); e[a][b] = c; e[b][a] = c;//无向图 } book[1]=1; DFS(1,0); System.out.println(min); } }
最少转机—图的广度优先遍历
package ch5; import java.util.LinkedList; import java.util.Queue; import java.util.Scanner; /* 5 7 1 5 1 2 1 3 2 3 2 4 3 4 3 5 4 5 2 Process finished with exit code 0 */ public class ZSZJBFS { static Queue<Node> queue = new LinkedList<>(); static int[][] e = new int[100][100]; static int[] book = new int[100]; static int start,end,n,m,a,b,cur,falg; static { Scanner scanner = new Scanner(System.in); n = scanner.nextInt(); m = scanner.nextInt(); start = scanner.nextInt(); end = scanner.nextInt(); for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { if (i == j) e[i][j] = 0; else e[i][i] = Integer.MAX_VALUE; } } for (int i = 1; i <= m; i++) { a = scanner.nextInt(); b = scanner.nextInt(); e[a][b] = 1; e[b][a] = 1; } } public static void main(String[] args) { Node node = new Node(start,0);//初始化第一个城市 queue.add(node);//把第一个城市加入队列 book[start] = 1;//把第一个城市做标记 //当队列不为空的时候循环 while (!queue.isEmpty()){ cur = queue.peek().x; for (int j =1;j<=n;j++){//一次每个城市循环遍历 if (e[cur][j] == 1 && book[j] ==0){ //如果这个城市可以和cur当前城市连接并且没有在队列当中,那么把这个j加入到队列中 Node node1 = new Node(j,queue.peek().s+1); queue.add(node1); book[j] = 1;//标记这个队列 } if (queue.peek().x == end){ falg = 1; break; } } if (falg == 1) break; queue.remove(); } System.out.println(queue.peek().s); } } class Node{ int x;//城市编号 int s;//转机次数 public Node(){} public Node(int x, int s){ this.x =x; this.s =s; } }
这篇关于《啊哈算法》——图的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-04百万架构师第六课:设计模式:策略模式及模板模式
- 2025-01-04百万架构师第七课:设计模式:装饰器模式及观察者模式
- 2025-01-04适用于企业管理的协作工具API推荐
- 2025-01-04挑战16:被限流的CPU
- 2025-01-03企业在选择工具时,如何评估其背后的技术团队
- 2025-01-03Angular中打造动态多彩标签组件的方法
- 2025-01-03Flask过时了吗?FastAPI才是未来?
- 2025-01-0311个每位开发者都应知道的免费实用网站
- 2025-01-03从REST到GraphQL:为什么以及我是如何完成转型的
- 2025-01-03掌握RAG:从单次问答到连续对话