【信号处理】Python实现2PSK、QPSK、8PSK、N-QAM的调制和解调
2021/10/3 17:40:51
本文主要是介绍【信号处理】Python实现2PSK、QPSK、8PSK、N-QAM的调制和解调,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
目录
- 1 引言
- 2 实现
- 2.1 调制
- 2.2 解调
- 3 完整编码和解码的例子
1 引言
本文不涉及原理讲解,只提供实现方法。需要借助Commpy开源包去实现通信中的各种处理。
安装方法,源码下载地址Commpy源码下载
方法一 pip install scikit-commpy 方法二 git clone https://github.com/veeresht/CommPy.git cd CommPy python setup.py install
2 实现
2.1 调制
import commpy as cpy bits = np.random.binomial(n=1,p=0.5,size=(128)) Modulation_type ="BPSK" if Modulation_type=="BPSK": bpsk = cpy.PSKModem(2) symbol = bpsk.modulate(bits) return symbol elif Modulation_type=="QPSK": qpsk = cpy.PSKModem(4) symbol = qpsk.modulate(bits) return symbol elif Modulation_type=="8PSK": psk8 = cpy.PSKModem(8) symbol = psk8.modulate(bits) return symbol elif Modulation_type=="8QAM": qam8 = cpy.QAMModem(8) symbol = qam8.modulate(bits) return symbol elif Modulation_type=="16QAM": qam16 = cpy.QAMModem(16) symbol = qam16.modulate(bits) return symbol elif Modulation_type=="64QAM": qam64 = cpy.QAMModem(64) symbol = qam64.modulate(bits) return symbol
2.2 解调
# 和调制一样,需要先定义调制方法的类,再去调用解调的函数。 import commpy as cpy bits = np.random.binomial(n=1,p=0.5,size=(128)) # Modem : QPSK modem = mod.QAMModem(4) signal = modem.modulate(bits) modem.demodulate(signal, 'hard')
3 完整编码和解码的例子
来源Commpy 例子
# Authors: CommPy contributors # License: BSD 3-Clause from __future__ import division, print_function # Python 2 compatibility import math import matplotlib.pyplot as plt import numpy as np import commpy.channelcoding.convcode as cc import commpy.channels as chan import commpy.links as lk import commpy.modulation as mod import commpy.utilities as util # ============================================================================= # Convolutional Code 1: G(D) = [1+D^2, 1+D+D^2] # Standard code with rate 1/2 # ============================================================================= # Number of delay elements in the convolutional encoder memory = np.array(2, ndmin=1) # Generator matrix g_matrix = np.array((0o5, 0o7), ndmin=2) # Create trellis data structure trellis1 = cc.Trellis(memory, g_matrix) # ============================================================================= # Convolutional Code 1: G(D) = [1+D^2, 1+D^2+D^3] # Standard code with rate 1/2 # ============================================================================= # Number of delay elements in the convolutional encoder memory = np.array(3, ndmin=1) # Generator matrix (1+D^2+D^3 <-> 13 or 0o15) g_matrix = np.array((0o5, 0o15), ndmin=2) # Create trellis data structure trellis2 = cc.Trellis(memory, g_matrix) # ============================================================================= # Convolutional Code 2: G(D) = [[1, 0, 0], [0, 1, 1+D]]; F(D) = [[D, D], [1+D, 1]] # RSC with rate 2/3 # ============================================================================= # Number of delay elements in the convolutional encoder memory = np.array((1, 1)) # Generator matrix & feedback matrix g_matrix = np.array(((1, 0, 0), (0, 1, 3))) feedback = np.array(((2, 2), (3, 1))) # Create trellis data structure trellis3 = cc.Trellis(memory, g_matrix, feedback, 'rsc') # ============================================================================= # Basic example using homemade counting and hard decoding # ============================================================================= # Traceback depth of the decoder tb_depth = None # Default value is 5 times the number or memories for trellis in (trellis1, trellis2, trellis3): for i in range(10): # Generate random message bits to be encoded message_bits = np.random.randint(0, 2, 1000) # Encode message bits coded_bits = cc.conv_encode(message_bits, trellis) # Introduce bit errors (channel) coded_bits[np.random.randint(0, 1000)] = 0 coded_bits[np.random.randint(0, 1000)] = 0 coded_bits[np.random.randint(0, 1000)] = 1 coded_bits[np.random.randint(0, 1000)] = 1 # Decode the received bits decoded_bits = cc.viterbi_decode(coded_bits.astype(float), trellis, tb_depth) num_bit_errors = util.hamming_dist(message_bits, decoded_bits[:len(message_bits)]) if num_bit_errors != 0: print(num_bit_errors, "Bit Errors found!") elif i == 9: print("No Bit Errors :)") # ================================================================================================== # Complete example using Commpy features and compare hard and soft demodulation. Example with code 1 # ================================================================================================== # Modem : QPSK modem = mod.QAMModem(4) # AWGN channel channels = chan.SISOFlatChannel(None, (1 + 0j, 0j)) # SNR range to test SNRs = np.arange(0, 6) + 10 * math.log10(modem.num_bits_symbol) # Modulation function def modulate(bits): return modem.modulate(cc.conv_encode(bits, trellis1, 'cont')) # Receiver function (no process required as there are no fading) def receiver_hard(y, h, constellation, noise_var): return modem.demodulate(y, 'hard') # Receiver function (no process required as there are no fading) def receiver_soft(y, h, constellation, noise_var): return modem.demodulate(y, 'soft', noise_var) # Decoder function def decoder_hard(msg): return cc.viterbi_decode(msg, trellis1) # Decoder function def decoder_soft(msg): return cc.viterbi_decode(msg, trellis1, decoding_type='soft') # Build model from parameters code_rate = trellis1.k / trellis1.n model_hard = lk.LinkModel(modulate, channels, receiver_hard, modem.num_bits_symbol, modem.constellation, modem.Es, decoder_hard, code_rate) model_soft = lk.LinkModel(modulate, channels, receiver_soft, modem.num_bits_symbol, modem.constellation, modem.Es, decoder_soft, code_rate) # Test BERs_hard = model_hard.link_performance(SNRs, 10000, 600, 5000, code_rate) BERs_soft = model_soft.link_performance(SNRs, 10000, 600, 5000, code_rate) plt.semilogy(SNRs, BERs_hard, 'o-', SNRs, BERs_soft, 'o-') plt.grid() plt.xlabel('Signal to Noise Ration (dB)') plt.ylabel('Bit Error Rate') plt.legend(('Hard demodulation', 'Soft demodulation')) plt.show()
这篇关于【信号处理】Python实现2PSK、QPSK、8PSK、N-QAM的调制和解调的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-14获取参数学习:Python编程入门教程
- 2024-11-14Python编程基础入门
- 2024-11-14Python编程入门指南
- 2024-11-13Python基础教程
- 2024-11-12Python编程基础指南
- 2024-11-12Python基础编程教程
- 2024-11-08Python编程基础与实践示例
- 2024-11-07Python编程基础指南
- 2024-11-06Python编程基础入门指南
- 2024-11-06怎么使用python 计算两个GPS的距离功能-icode9专业技术文章分享