机器学习实战-降维
2021/10/4 6:13:24
本文主要是介绍机器学习实战-降维,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
举例说明维度的高低会影响数据的预测:
二维空间中随机两点的平均距离为0.52,三维空间中随机两点的平均距离为0.66,100万维的空间中随机两点的平均距离维408.25
也就意味着无限大的高维空间是非常稀疏的,非常容易过拟合,所以预测是极不稳定的,因此我们有降维的需求。
当然,我们应该明白,不是所有的数据都一定需要降维,有些在高维空间反而更加容易区分。例如,瑞士卷,X=5左边1类,右边2类。
PCA 投影,高维空间的低维子空间。保留差异性最大的轴。利用SVD分解。 包括SVD,随机PCA
LLE 流型学习(瑞士卷),可以展开为二维空间。
这篇关于机器学习实战-降维的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-17机器学习资料入门指南
- 2024-12-06如何用OpenShift流水线打造高效的机器学习运营体系(MLOps)
- 2024-12-06基于无监督机器学习算法的预测性维护讲解
- 2024-12-03【机器学习(六)】分类和回归任务-LightGBM算法-Sentosa_DSML社区版
- 2024-12-0210个必须使用的机器学习API,为高级分析助力
- 2024-12-01【机器学习(五)】分类和回归任务-AdaBoost算法-Sentosa_DSML社区版
- 2024-11-28【机器学习(四)】分类和回归任务-梯度提升决策树(GBDT)算法-Sentosa_DSML社区版
- 2024-11-26【机器学习(三)】分类和回归任务-随机森林(Random Forest,RF)算法-Sentosa_DSML社区版
- 2024-11-18机器学习与数据分析的区别
- 2024-10-28机器学习资料入门指南