机器学习Sklearn实战——手写线性回归
2021/11/4 23:11:47
本文主要是介绍机器学习Sklearn实战——手写线性回归,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
手写线性回归
import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression X = np.linspace(2,10,20).reshape(-1,1) y = np.random.randint(1,6,size = 1)*X + np.random.randint(-5,5,size = 1) #噪声 加盐 y += np.random.randn(20,1)*0.8 plt.scatter(X,y,color = "red") w = lr.coef_[0,0] b = lr.intercept_[0] print(w,b) plt.scatter(X,y) x = np.linspace(1,11,50) plt.plot(x,w*x + b,color= "green")
结果:
2.995391527138711 1.9801931425932864
import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression X = np.linspace(2, 10, 20).reshape(-1,1) # f(x) = wx + b y = np.random.randint(1, 6, size=1)*X + np.random.randint(-5, 5, size=1) # 噪声,加盐 y += np.random.randn(20, 1)*0.8 plt.scatter(X, y, color = 'red') w = lr.coef_[0, 0] b = lr.intercept_[0] x = np.linspace(1, 11, 50) plt.plot(x, w*x + b, color='green') # 使用梯度下降解决一元一次的线性问题:w,b class LinearModel(object): def __init__(self): self.w = np.random.randn(1)[0] self.b = np.random.randn(1)[0] # 数学建模:将数据X和目标值关系用数学公式表达 def model(self,x):#model 模型,f(x) = wx + b return self.w*x + self.b def loss(self,x,y):#最小二乘 cost = (y - self.model(x))**2 # 梯度就是偏导数,求解两个未知数:w,b gradient_w = 2*(y - self.model(x))*(-x) gradient_b = 2*(y - self.model(x))*(-1) return cost,gradient_w,gradient_b # 梯度下降 def gradient_descent(self,gradient_w,gradient_b,learning_rate = 0.1): # 更新w,b self.w -= gradient_w*learning_rate self.b -= gradient_b*learning_rate # 训练fit def fit(self,X,y): count = 0 #算法执行优化了3000次,退出 tol = 0.0001 last_w = self.w + 0.1 last_b = self.b + 0.1 length = len(X) while True: if count > 3000:#执行的次数到了 break # 求解的斜率和截距的精确度达到要求 if (abs(last_w - self.w) < tol) and (abs(last_b - self.b) < tol): break cost = 0 gradient_w = 0 gradient_b = 0 for i in range(length): cost_,gradient_w_,gradient_b_ = self.loss(X[i,0],y[i,0]) cost += cost_/length gradient_w += gradient_w_/length gradient_b += gradient_b_/length print('---------------------执行次数:%d。损失值是:%0.2f'%(count,cost)) last_w = self.w last_b = self.b # 更新截距和斜率 self.gradient_descent(gradient_w,gradient_b,0.01) count+=1 def result(self): return self.w,self.b
lm = LinearModel() lm.fit(X,y) lm.result()
结果:
(2.9489680632625297, 2.2698211503362224)
plt.scatter(X,y,color = "red") plt.plot(x,2.94896*x + 2.2698211,color= "green") plt.rcParams['font.sans-serif'] = ['Arial Unicode MS'] plt.title("自定义的算法拟合曲线")
二元一次拟合
import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression #f(x)w = w1*x**2 + w2*x + b #一元二次 #f(x1,x2) = w1*x1 + w2*x2 +b #二元一次 X = np.linspace(0,10,num = 50).reshape(-1,1) X = np.concatenate([X**2,X],axis = 1) X.shape
w = np.random.randint(1,10,size = 2) b = np.random.randint(-5,5,size = 1) #矩阵乘法 y = X.dot(w) + b plt.plot(X[:,1],y,c="r") plt.title("w1:%d.w2:%d.w3:%d"%(w[0],w[1],b[0]))
结果:
Text(0.5, 1.0, 'w1:7.w2:1.w3:-5')
#使用sklearn自带的算法进行预测 from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(X,y) print(lr.coef_,lr.intercept_) plt.scatter(X[:,1],y,marker = "*") x = np.linspace(-2,12,100) plt.plot(x,7*x**2 + 1*x + -4.99,c="g")
结果:
[7. 1.] -4.999999999999972
手写线性回归,拟合多属性,多元方程
# epoch 训练的次数,梯度下降训练多少 def gradient_descent(X,y,lr,epoch,w,b): # 一批量多少,长度 batch = len(X) for i in range(epoch): # d_lost:是损失的梯度 d_loss = 0 # 梯度,斜率梯度 dw = [0 for _ in range(len(w))] # 截距梯度 db = 0 for j in range(batch): y_ = 0 #预测的值 预测方程 y_ = f(x) = w1*x1 + w2*x2 + b for n in range(len(w)): y_ += X[j][n]*w[n] y_ += b # (y - y_)**2 -----> 2*(y - y_)*(-1) # (y_- y)**2 -----> 2*(y_ - y)*(1) d_loss = -(y[j] - y_) for n in range(len(w)): dw[n] += X[j][n]*d_loss/float(batch) db += 1*d_loss/float(batch) # 更新一下系数和截距,梯度下降 for n in range(len(w)): w[n] -= dw[n]*lr[n] b -= db*lr[0] return w,b
lr = [0.0001,0.001] w = np.random.randn(2) b = np.random.randn(1)[0] gradient_descent(X,y,lr,500,w,b)
结果:
(array([ 7.18689265, -1.25846592]), 0.6693960269813103)
plt.scatter(X[:,1],y,marker = "*") plt.plot(x,7.1868*x**2 - 1.2584*x + 0.6694,c="g")
继续优化
- x的num变大,从50变成500
- 学习率调小
这篇关于机器学习Sklearn实战——手写线性回归的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-17机器学习资料入门指南
- 2024-12-06如何用OpenShift流水线打造高效的机器学习运营体系(MLOps)
- 2024-12-06基于无监督机器学习算法的预测性维护讲解
- 2024-12-03【机器学习(六)】分类和回归任务-LightGBM算法-Sentosa_DSML社区版
- 2024-12-0210个必须使用的机器学习API,为高级分析助力
- 2024-12-01【机器学习(五)】分类和回归任务-AdaBoost算法-Sentosa_DSML社区版
- 2024-11-28【机器学习(四)】分类和回归任务-梯度提升决策树(GBDT)算法-Sentosa_DSML社区版
- 2024-11-26【机器学习(三)】分类和回归任务-随机森林(Random Forest,RF)算法-Sentosa_DSML社区版
- 2024-11-18机器学习与数据分析的区别
- 2024-10-28机器学习资料入门指南