关于ta-lib安装包
2021/11/15 23:10:39
本文主要是介绍关于ta-lib安装包,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
关于ta-lib安装包
- 1.市场指标计算
- 1.1 MA指标
- 1.2 MACD指标
- 1.3 RSI指标
- 1.4 KDJ指标
- 1.5 CCI指标
- 1.6 ATR指标
- 1.7 OBV指标
1.市场指标计算
1.1 MA指标
import talib import pandas as pd import mplfinance as mpf import matplotlib.pyplot as plt #from matplotlib.finance import candlestick2_ohlc from mpl_finance import candlestick2_ohlc from mpl_finance import candlestick_ohlc #pip install https://github.com/matplotlib/mpl_finance/archive/master.zip df = pd.read_csv('./000001.SZ.csv') ma5_df=talib.MA(df['close'],timeperiod=5) #print(ma_df) ma10_df=talib.MA(df['close'],timeperiod=10) ma20_df=talib.MA(df['close'],timeperiod=20) fig=plt.figure() ax=fig.add_subplot(111) ax.plot(ma5_df,label='MA5') ax.plot(ma10_df,label='MA10') ax.plot(ma20_df,label='MA20') candlestick2_ohlc(ax,df['open'],df['high'],df['low'],df['close'],width=0.6,colorup='red',colordown='green') plt.legend() plt.show()
1.2 MACD指标
diff ,dea,macd=talib.MACD(df['close'],fastperiod=12,slowperiod=26,signalperiod=9)
1.3 RSI指标
rsi=tailb.RSI(df['close'],timeperiod=14)
1.4 KDJ指标
K,D=talib.STOCH(df['high'],df['low'],df['close'],fastk_period=9,slowk_period=3,slowd_period=3)
1.5 CCI指标
CCI=talib.CCI(df['high'],df['low'],df['close'],timeperiod=14)
1.6 ATR指标
ATR=talib.ATR(df['high'],df['low'],df['close'],timeperiod=14)
1.7 OBV指标
OBV=talib.OBV(df['close'],df['vol'])
待更新。。。
这篇关于关于ta-lib安装包的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-23Springboot应用的多环境打包入门
- 2024-11-23Springboot应用的生产发布入门教程
- 2024-11-23Python编程入门指南
- 2024-11-23Java创业入门:从零开始的编程之旅
- 2024-11-23Java创业入门:新手必读的Java编程与创业指南
- 2024-11-23Java对接阿里云智能语音服务入门详解
- 2024-11-23Java对接阿里云智能语音服务入门教程
- 2024-11-23JAVA对接阿里云智能语音服务入门教程
- 2024-11-23Java副业入门:初学者的简单教程
- 2024-11-23JAVA副业入门:初学者的实战指南