读书报告
2021/12/12 6:17:00
本文主要是介绍读书报告,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
Numpy:
来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多,本身是由C语言开发。这个是很基础的扩展,其余的扩展都是以此为基础。数据结构为ndarray,一般有三种方式来创建。
Pandas:
基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。
Matplotlib:
Python中最著名的绘图系统,很多其他的绘图例如seaborn(针对pandas绘图而来)也是由其封装而成。
绘制的图形可以大致按照ggplot的颜色显示,但是还是感觉很鸡肋。但是matplotlib的复杂给其带来了很强的定制性。其具有面向对象的方式及Pyplot的经典高层封装。
Scipy:
方便、易于使用、专为科学和工程设计的Python工具包.它包括统计,优化,整合,线性代数模块,傅里叶变换,信号和图像处理,常微分方程求解器等等。基本可以代替Matlab,但是使用的话和数据处理的关系不大,数学系,或者工程系相对用的多一些。
这篇关于读书报告的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-04敏捷管理与看板工具:提升研发、设计、电商团队工作效率的利器
- 2025-01-04智慧养老管理工具如何重塑养老生态?
- 2025-01-04如何打造高绩效销售团队:工具与管理方法的结合
- 2025-01-04解决电商团队协作难题,在线文档工具助力高效沟通
- 2025-01-04春节超市管理工具:解锁高效运营与顾客满意度的双重密码
- 2025-01-046种主流销售预测模型:如何根据场景选用最佳方案
- 2025-01-04外贸服务透明化:增强客户信任与合作的最佳实践
- 2025-01-04重新定义电商团队协作:在线文档工具的战略作用
- 2025-01-04Easysearch Java SDK 2.0.x 使用指南(三)
- 2025-01-04百万架构师第八课:设计模式:设计模式容易混淆的几个对比|JavaGuide