ipopt python使用教程

2021/12/15 17:19:50

本文主要是介绍ipopt python使用教程,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

文章目录

  • 安装
    • 安装 pyomo 和 ipopt
  • 建模和求解
  • 参考

安装

  • 环境: ubuntu 21.04 + python 3.9.5(其实对于这个而言的话ubuntu / windows 以及 python的版本应该是不会对结果造成任何影响的)

整个求解是基于Python的pyomo建模平台的,因此首先先安装pyomo,然后在基于pyomo使用开源的ipopt进行求解

安装 pyomo 和 ipopt

!pip install pyomo # 安装 pyomo
# Download ipopt-linux64
!wget "https://ampl.com/dl/open/ipopt/ipopt-linux64.zip"
!unzip ipopt-linux64.zip # 解压后得到 ipopt 文件夹,里面有 ipopt 执行文件

建模和求解

以最基础的一个非线性求解问题来看

m i n f ( x ) = x 1 2 + x 2 2 s . t . − x 1 2 + x 2 < = 0 x 1 + x 2 = 2 \begin{aligned} min \quad &f(x) = x_1^2 + x_2^2 \\ s.t. \quad &-x_1^2 + x_2 <=0 \\ & x_1 + x_2 = 2 \end{aligned} mins.t.​f(x)=x12​+x22​−x12​+x2​<=0x1​+x2​=2​

from pyomo.environ import * 
path = '~/Documents/ipopt/ipopt' # 这里的 path 指的就是刚刚 ipopt 执行文件的路径

model = ConcreteModel() # 创建模型对象

# define model variables
# domain = Reals(Default) / NonNegativeReals Binary
model.x1 = Var(domain=Reals)
model.x2 = Var(domain=Reals)
# define objective function
# sense = minimize(Default) / maximize 
model.f = Objective(expr = model.x1**2 + model.x2**2, sense=minimize)
# define constraints, equations or inequations 
model.c1 = Constraint(expr = -model.x1**2 + model.x2 <= 0)
model.ceq1 = Constraint(expr = model.x1 + model.x2**2 == 2)
# use 'pprint' to print the model information 
model.pprint()

得到输出如下:

2 Var Declarations
    x1 : Size=1, Index=None
        Key  : Lower : Value : Upper : Fixed : Stale : Domain
        None :  None :  None :  None : False :  True :  Reals
    x2 : Size=1, Index=None
        Key  : Lower : Value : Upper : Fixed : Stale : Domain
        None :  None :  None :  None : False :  True :  Reals

1 Objective Declarations
    f : Size=1, Index=None, Active=True
        Key  : Active : Sense    : Expression
        None :   True : minimize : x1\**2 + x2**2

2 Constraint Declarations
    c1 : Size=1, Index=None, Active=True
        Key  : Lower : Body         : Upper : Active
        None :  -Inf : - x1\**2 + x2 :   0.0 :   True
    ceq1 : Size=1, Index=None, Active=True
        Key  : Lower : Body       : Upper : Active
        None :   2.0 : x1 + x2**2 :   2.0 :   True

5 Declarations: x1 x2 f c1 ceq1

然后使用 SolverFactory函数进行求解:

SolverFactory('ipopt', executable=path).solve(model).write()

此处 ipopt还可以换成别的求解器,例如cbc等等,可以对不同求解器的性能进行横向的比较,在此我就不展开了
求解后得到结果如下:

# ==========================================================
# = Solver Results                                         =
# ==========================================================
# ----------------------------------------------------------
#   Problem Information
# ----------------------------------------------------------
Problem: 
- Lower bound: -inf
  Upper bound: inf
  Number of objectives: 1
  Number of constraints: 2
  Number of variables: 2
  Sense: unknown
# ----------------------------------------------------------
#   Solver Information
# ----------------------------------------------------------
Solver: 
- Status: ok
  Message: Ipopt 3.12.13\x3a Optimal Solution Found
  Termination condition: optimal
  Id: 0
  Error rc: 0
  Time: 0.011124610900878906
# ----------------------------------------------------------
#   Solution Information
# ----------------------------------------------------------
Solution: 
- number of solutions: 0
  number of solutions displayed: 0

除此之外,我们还能对模型中的内容进行查看和打印:

print('optimal f: {:.4f}'.format(model.f()))
print('optimal x: [{:.4f}, {:.4f}]'.format(model.x1(), model.x2()))

得到

optimal f: 2.0000
optimal x: [1.0000, 1.0000]

参考

上述内容参考了 Jeffrey Kantor 的 Github 内容:
ND Pyomo Cookbook



这篇关于ipopt python使用教程的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程