《流畅的python 第一章 python数据模型》
2021/12/18 12:19:40
本文主要是介绍《流畅的python 第一章 python数据模型》,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
第一章 python数据模型
摘要:本章主要讲一些特殊方法(前后带双下划线写法的方法,如__len__,__getitem__),为什么有特殊方法,特殊方法的应用。
特殊方法
python是一种面向对象语言,那么为什么会有len(x)这种写法,而不是x.len()呢
Python 解释器遇到len()这种特殊句法时,会使用特殊方法去激活一些基本的对象操作,这些特殊方法的名字以两个下划线开头,以两个下划线结尾。如__len__,__getitem__。比如obj[key]背后就是__getitem__方法,为了能求得obj[key]的值,解释器实际上调用的是obj.__getitem__(key)。
通过合理使用这些方法,能让自己的对象实现和支持以下语言结构,并与之交互:
- 迭代
- 集合类
- 属性访问
- 运算符重载
- 函数和方法的调用
- 对象的创建和销毁
- 字符串表示形式和格式化
- 管理上下文(with模块)
魔术方法(magic method)是特殊方法的昵称,又叫双下方法(dunder method)。
一摞python风格的纸牌
用一个非常简单的例子来展示如何实现__getitem__、__len__这两个特殊方法。
import collections Card=collections.namedtuple('Card',['rank','suit']) #使用collections.namedtuple创建了一个元组类型的子类,子类类名为Card,子类中有两个key,key值分别为'rank'、'suit' class FrenchDeck: ranks=[str(n) for n in range(2,11)]+list('JQKA')#ranks=['2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K', 'A'] suits='spades diamonds clubs hearts'.split()#suits=['spades', 'diamonds', 'clubs', 'hearts'] def __init__(self): self._cards=[Card(rank,suit) for rank in self.ranks for suit in self.suits] def __len__(self): return len(self._cards) def __getitem__(self, item): return self._cards[item]
利用namedtuple,我们可以很轻松地得到一个纸牌对象:
bear_card=Card(rank='7',suit='spades') print(bear_card)
/Users/zy/PycharmProjects/learnpython/venv/bin/python /Users/zy/PycharmProjects/learnpython/collect.py Card(rank='7', suit='spades') Process finished with exit code 0
然后,我们来关注FrenchDeck这个类,将它实例化后,我们可以用len()函数来查看这叠纸牌共有多少张。
deck=FrenchDeck() print(len(deck))
/Users/zy/PycharmProjects/learnpython/venv/bin/python /Users/zy/PycharmProjects/learnpython/collect.py 52 Process finished with exit code 0
也可以使用index下标来访问特定的纸牌:
print(deck[5])
/Users/zy/PycharmProjects/learnpython/venv/bin/python /Users/zy/PycharmProjects/learnpython/collect.py Card(rank='3', suit='diamonds') Process finished with exit code 0
如果在FrenchDeck类中注释掉__len__方法,就无法使用len(deck),同理,如果在FrenchDeck类中注释掉__getitem__方法,就无法使用deck[key]访问特定元素。
而且我们不需要再写一个方法用来随机抽取一张纸牌,只需要调用python内置的random.choice。
from random import choice deck=FrenchDeck() print(choice(deck))
/Users/zy/PycharmProjects/learnpython/venv/bin/python /Users/zy/PycharmProjects/learnpython/collect.py Card(rank='A', suit='spades') Process finished with exit code 0
从上述试验中,我们发现了通过实现特殊方法来利用python数据模型的两个好处:
- 用户实例化该类后,不必费心去记标准操作的格式名称,比如说获取元素总数,是size方法还是length方法
- 可以更加方便的利用python标准库,而不需要重新自己写代码
并且由于__getitem__方法把下标访问[]的操作交给了self._cards列表,deck自动支持了切片操作。
print(deck[:3]) print(deck[12::13])
/Users/zy/PycharmProjects/learnpython/venv/bin/python /Users/zy/PycharmProjects/learnpython/collect.py [Card(rank='2', suit='spades'), Card(rank='2', suit='diamonds'), Card(rank='2', suit='clubs')] [Card(rank='5', suit='spades'), Card(rank='8', suit='diamonds'), Card(rank='J', suit='clubs'), Card(rank='A', suit='hearts')] Process finished with exit code 0
另外,仅仅实现了__getitem__方法,deck就变成可迭代的了:
for card in deck: if card.rank=='J': print(card) else: pass
上述代码找到所有’J’的纸牌
/Users/zy/PycharmProjects/learnpython/venv/bin/python /Users/zy/PycharmProjects/learnpython/collect.py Card(rank='J', suit='spades') Card(rank='J', suit='diamonds') Card(rank='J', suit='clubs') Card(rank='J', suit='hearts') Process finished with exit code 0
反向迭代也可以:
for card in reversed(deck): if card.rank=='J': print(card) else: pass
/Users/zy/PycharmProjects/learnpython/venv/bin/python /Users/zy/PycharmProjects/learnpython/collect.py Card(rank='J', suit='hearts') Card(rank='J', suit='clubs') Card(rank='J', suit='diamonds') Card(rank='J', suit='spades') Process finished with exit code 0
迭代通常是隐式的,比如说一个集合类型没有实现__contains__方法,那么in运算符就会按顺序做一次迭代搜索,因为它是可迭代的:
print(Card(rank='J', suit='hearts') in deck) print(Card(rank='O', suit='hearts') in deck)
/Users/zy/PycharmProjects/learnpython/venv/bin/python /Users/zy/PycharmProjects/learnpython/collect.py True False Process finished with exit code 0
给纸牌排序:2最小,A最大,黑桃最大,红桃次之,方块再次,梅花最小。
suit_values=dict(spades=3,hearts=2,diamonds=1,clubs=0)#spades:黑桃 hearts:红桃 diamonds:方块 clubs:梅花 # spades A>hearts A>diamonds A>clubs A> # spades K>hearts K>diamonds K>clubs K> # spades Q>hearts Q>diamonds Q>clubs Q> # spades J>hearts J>diamonds J>clubs J> # spades 10>hearts 10>diamonds 10>clubs 10> # spades 9>hearts 9>diamonds 9>clubs 9> # spades 8>hearts 8>diamonds 8>clubs 8> # spades 7>hearts 7>diamonds 7>clubs 7> # spades 6>hearts 6>diamonds 6>clubs 6> # spades 5>hearts 5>diamonds 5>clubs 5> # spades 4>hearts 4>diamonds 4>clubs 4> # spades 3>hearts 3>diamonds 3>clubs 3> # 1*4+3 1*4+2 1*4+1 1*4+0 # spades 2>hearts 2>diamonds 2>clubs 2 # 0*4+3 0*4+2 0*4+1 0*4+0 def spades_high(card): rank_value=FrenchDeck.ranks.index(card.rank) return rank_value*len(suit_values)+suit_values[card.suit]#排序规则的公式 for card in sorted(deck,key=spades_high):#先将card传入spades_high()函数进行计算,按最终返回值排序 print(card,spades_high(card))
有了spades_high函数,就能对这摞纸牌进行升序排序了。
/Users/zy/PycharmProjects/learnpython/venv/bin/python /Users/zy/PycharmProjects/learnpython/collect.py Card(rank='2', suit='clubs') 0 Card(rank='2', suit='diamonds') 1 Card(rank='2', suit='hearts') 2 Card(rank='2', suit='spades') 3 Card(rank='3', suit='clubs') 4 Card(rank='3', suit='diamonds') 5 Card(rank='3', suit='hearts') 6 Card(rank='3', suit='spades') 7 Card(rank='4', suit='clubs') 8 Card(rank='4', suit='diamonds') 9 Card(rank='4', suit='hearts') 10 Card(rank='4', suit='spades') 11 Card(rank='5', suit='clubs') 12 Card(rank='5', suit='diamonds') 13 Card(rank='5', suit='hearts') 14 Card(rank='5', suit='spades') 15 Card(rank='6', suit='clubs') 16 Card(rank='6', suit='diamonds') 17 Card(rank='6', suit='hearts') 18 Card(rank='6', suit='spades') 19 Card(rank='7', suit='clubs') 20 Card(rank='7', suit='diamonds') 21 Card(rank='7', suit='hearts') 22 Card(rank='7', suit='spades') 23 Card(rank='8', suit='clubs') 24 Card(rank='8', suit='diamonds') 25 Card(rank='8', suit='hearts') 26 Card(rank='8', suit='spades') 27 Card(rank='9', suit='clubs') 28 Card(rank='9', suit='diamonds') 29 Card(rank='9', suit='hearts') 30 Card(rank='9', suit='spades') 31 Card(rank='10', suit='clubs') 32 Card(rank='10', suit='diamonds') 33 Card(rank='10', suit='hearts') 34 Card(rank='10', suit='spades') 35 Card(rank='J', suit='clubs') 36 Card(rank='J', suit='diamonds') 37 Card(rank='J', suit='hearts') 38 Card(rank='J', suit='spades') 39 Card(rank='Q', suit='clubs') 40 Card(rank='Q', suit='diamonds') 41 Card(rank='Q', suit='hearts') 42 Card(rank='Q', suit='spades') 43 Card(rank='K', suit='clubs') 44 Card(rank='K', suit='diamonds') 45 Card(rank='K', suit='hearts') 46 Card(rank='K', suit='spades') 47 Card(rank='A', suit='clubs') 48 Card(rank='A', suit='diamonds') 49 Card(rank='A', suit='hearts') 50 Card(rank='A', suit='spades') 51 Process finished with exit code 0
通过实现__len__和__getitem__这两个特殊方法,FrenchDeck这个类就像python自有的序列数据类型一样,拥有迭代、切片等python核心语言特性。
练习:创建一个书本类
Book=collections.namedtuple('Book',['name','editor','id']) # a_book=Book(name='救赎',editor='lily',id='20211101') # print(a_book) class MyBook: names='abandon baby cloud dead'.split() editors='lili susan yang alice'.split() ids=[x for x in range(2,6)] def __init__(self): self._book=[Book(name,editor,id) for name in self.names for editor in self.editors for id in self.ids] #这种写法对names,editors,ids进行了全排列组合 def __len__(self): return len(self._book) def __getitem__(self, item): return self._book[item] b=MyBook() print(len(b)) print(b[2])
执行结果如下:
/Users/zy/PycharmProjects/learnpython/venv/bin/python /Users/zy/PycharmProjects/learnpython/collect.py 64 Book(name='abandon', editor='lili', id=4) Process finished with exit code 0
这篇关于《流畅的python 第一章 python数据模型》的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-03用FastAPI掌握Python异步IO:轻松实现高并发网络请求处理
- 2025-01-02封装学习:Python面向对象编程基础教程
- 2024-12-28Python编程基础教程
- 2024-12-27Python编程入门指南
- 2024-12-27Python编程基础
- 2024-12-27Python编程基础教程
- 2024-12-27Python编程基础指南
- 2024-12-24Python编程入门指南
- 2024-12-24Python编程基础入门
- 2024-12-24Python编程基础:变量与数据类型