使用人脸客户端库快速实现对面部的分析---C#
2021/12/27 17:07:53
本文主要是介绍使用人脸客户端库快速实现对面部的分析---C#,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
目录
- 效果展示:
- 步骤一:安装人脸客户端库和窗口相关的库
- 步骤二:声明初始化相关变量
- 为资源的密钥和终结点创建变量
- 客户端构造器
- 图片相关变量
- 窗口工具栏
- 步骤三:MainWindiow窗口构造器
- 步骤四:方法:BrowseButton_Click实现点击按钮以获取展示图片并调用UploadAndDetectFaces方法,在人脸周围显示矩形
- 步骤五:方法FacePhoto_MouseMove:当鼠标移动到人脸矩形,显示相关的人脸描述信息
- 步骤六:方法UploadAndDetectFaces:上传图片并且调用DetectWithStreamAsync
- 步骤七:方法FaceDescription:处理人脸描述的字符串
- 完整代码
效果展示:
步骤一:安装人脸客户端库和窗口相关的库
添加以下 using 指令:
///人脸客户端库 using System; using System.Collections.Generic; using System.IO; using System.Text; using System.Threading.Tasks; using Microsoft.Azure.CognitiveServices.Vision.Face; using Microsoft.Azure.CognitiveServices.Vision.Face.Models; ///窗口相关库 using System.Windows; using System.Windows.Input; using System.Windows.Media; using System.Windows.Media.Imaging;
步骤二:声明初始化相关变量
为资源的密钥和终结点创建变量
// 添加你自己的密钥 private static string subscriptionKey = "xxxxxxxxxxxxxxxxxxxxxxxxxxx"; // 添加终结点 private static string faceEndpoint = "https://cnsoft.cognitiveservices.azure.cn/";
客户端构造器
private readonly IFaceClient faceClient = new FaceClient( new ApiKeyServiceClientCredentials(subscriptionKey), new System.Net.Http.DelegatingHandler[] { } );
FaceClient
:此类代表使用人脸服务的授权,使用所有人脸功能时都需要用到它。 请使用你的订阅信息实例化此类,然后使用它来生成其他类的实例。
图片相关变量
// 检测到的人脸的列表 private IList<DetectedFace> faceList; // 检测到的人脸描述 字符串数组 private string[] faceDescriptions; // 显示图像的调整大小因子。 private double resizeFactor;
DectectedFace
:此类代表已从图像中的单个人脸检测到的所有数据。 可以使用它来检索有关人脸的详细信息。
窗口工具栏
private const string defaultStatusBarText = "Place the mouse pointer over a face to see the face description.";
步骤三:MainWindiow窗口构造器
public MainWindow() { //初始化窗口组件 InitializeComponent(); //如果字符串格式良好,为人脸客户端终结点赋值 if (Uri.IsWellFormedUriString(faceEndpoint, UriKind.Absolute)) { faceClient.Endpoint = faceEndpoint; } else//否则的话显示错误信息 { MessageBox.Show(faceEndpoint, "Invalid URI", MessageBoxButton.OK, MessageBoxImage.Error); Environment.Exit(0); } }
Uri.IsWellFormedUriString(String, UriKind)
:此方法通过尝试用字符串构造一个 URI 来指示字符串是否为格式良好的,并确保字符串不需要进一步转义。
步骤四:方法:BrowseButton_Click实现点击按钮以获取展示图片并调用UploadAndDetectFaces方法,在人脸周围显示矩形
private async void BrowseButton_Click(object sender, RoutedEventArgs e) { //从用户获取图片文件 var openDlg = new Microsoft.Win32.OpenFileDialog(); //指定图片格式 openDlg.Filter = "JPEG Image(*.jpg)|*.jpg"; //判断是否获取成功 bool? result = openDlg.ShowDialog(this); // Return if canceled. if (!(bool)result) { return; } / 显示图片 string filePath = openDlg.FileName; Uri fileUri = new Uri(filePath); BitmapImage bitmapSource = new BitmapImage(); bitmapSource.BeginInit(); bitmapSource.CacheOption = BitmapCacheOption.None; bitmapSource.UriSource = fileUri; bitmapSource.EndInit(); FacePhoto.Source = bitmapSource; / 检测所有的人脸 Title = "Detecting..."; faceList = await UploadAndDetectFaces(filePath);//上传并检测 Title = String.Format( "Detection Finished. {0} face(s) detected", faceList.Count); if (faceList.Count > 0) { // 准备从人脸周围话矩形 DrawingVisual visual = new DrawingVisual(); DrawingContext drawingContext = visual.RenderOpen(); drawingContext.DrawImage(bitmapSource, new Rect(0, 0, bitmapSource.Width, bitmapSource.Height)); double dpi = bitmapSource.DpiX; // 一些图片可能没有dpi resizeFactor = (dpi == 0) ? 1 : 96 / dpi; faceDescriptions = new String[faceList.Count]; for (int i = 0; i < faceList.Count; ++i) { DetectedFace face = faceList[i]; // 在人脸周围画矩形 drawingContext.DrawRectangle( Brushes.Transparent, new Pen(Brushes.Red, 2), new Rect( face.FaceRectangle.Left * resizeFactor, face.FaceRectangle.Top * resizeFactor, face.FaceRectangle.Width * resizeFactor, face.FaceRectangle.Height * resizeFactor ) ); // 将人脸的相关描述进行存储 faceDescriptions[i] = FaceDescription(face); } if (faceList.Count > 0) { TheEmotion.Text = "复制下面全部信息:\n" + faceDescriptions[0]; } drawingContext.Close(); // 显示人脸周围的矩形 RenderTargetBitmap faceWithRectBitmap = new RenderTargetBitmap( (int)(bitmapSource.PixelWidth * resizeFactor), (int)(bitmapSource.PixelHeight * resizeFactor), 96, 96, PixelFormats.Pbgra32); faceWithRectBitmap.Render(visual); FacePhoto.Source = faceWithRectBitmap; // 设置显示人脸描述的工具栏 faceDescriptionStatusBar.Text = defaultStatusBarText; } }
步骤五:方法FacePhoto_MouseMove:当鼠标移动到人脸矩形,显示相关的人脸描述信息
private void FacePhoto_MouseMove(object sender, MouseEventArgs e) { // 如果这个REST还没有完成,直接 return if (faceList == null) return; // 找到图片相对于鼠标的位置 Point mouseXY = e.GetPosition(FacePhoto); ImageSource imageSource = FacePhoto.Source; BitmapSource bitmapSource = (BitmapSource)imageSource; //调整比例 var scale = FacePhoto.ActualWidth / (bitmapSource.PixelWidth / resizeFactor); // 检查是否在矩形内 bool mouseOverFace = false; for (int i = 0; i < faceList.Count; ++i) { FaceRectangle fr = faceList[i].FaceRectangle; double left = fr.Left * scale; double top = fr.Top * scale; double width = fr.Width * scale; double height = fr.Height * scale; // 展示信息如果在矩形内 if (mouseXY.X >= left && mouseXY.X <= left + width && mouseXY.Y >= top && mouseXY.Y <= top + height) { faceDescriptionStatusBar.Text = faceDescriptions[i]; mouseOverFace = true; break; } } // 如果不在显示默认信息 if (!mouseOverFace) faceDescriptionStatusBar.Text = defaultStatusBarText; }
步骤六:方法UploadAndDetectFaces:上传图片并且调用DetectWithStreamAsync
private async Task<IList<DetectedFace>> UploadAndDetectFaces(string imageFilePath) { // 人脸属性的返回列表 IList<FaceAttributeType?> faceAttributes = new FaceAttributeType?[] { FaceAttributeType.Gender, FaceAttributeType.Age, FaceAttributeType.Smile, FaceAttributeType.Emotion, FaceAttributeType.Glasses, FaceAttributeType.Hair }; // 调用人脸API try { using (Stream imageFileStream = File.OpenRead(imageFilePath)) { IList<DetectedFace> faceList = await faceClient.Face.DetectWithStreamAsync( imageFileStream, true, false, faceAttributes); return faceList; } } // 调用出错 catch (APIErrorException f) { MessageBox.Show(f.Message); return new List<DetectedFace>(); } // Catch 并且展示所有错误信息 catch (Exception e) { MessageBox.Show(e.Message, "Error"); return new List<DetectedFace>(); } }
步骤七:方法FaceDescription:处理人脸描述的字符串
private string FaceDescription(DetectedFace face) { StringBuilder sb = new StringBuilder(); sb.Append("Face: "); //添加性别年龄和微笑描述 sb.Append(face.FaceAttributes.Gender); sb.Append(", "); sb.Append(face.FaceAttributes.Age); sb.Append(", "); sb.Append(String.Format("smile {0:F1}% ", face.FaceAttributes.Smile * 100)); sb.Append("\n"); // 添加情绪描述 Emotion emotionScores = face.FaceAttributes.Emotion; sb.Append("anger: "+ emotionScores.Anger + "\n"); sb.Append("contempt: " + emotionScores.Contempt + "\n"); sb.Append("disgust: " + emotionScores.Disgust + "\n"); sb.Append("fear: " + emotionScores.Fear + "\n"); sb.Append("happiness: " + emotionScores.Happiness + "\n"); sb.Append("neutral: " + emotionScores.Neutral + "\n"); sb.Append("sadness: " + emotionScores.Sadness + "\n"); sb.Append("surprise: " + emotionScores.Surprise + "\n"); // 添加是否戴眼镜 sb.Append("ifhasGlasses: "+face.FaceAttributes.Glasses); sb.Append("\n "); // 添加头发描述 sb.Append("Hair: "); //秃头率 if (face.FaceAttributes.Hair.Bald >= 0.01f) sb.Append(String.Format("bald {0:F1}% ", face.FaceAttributes.Hair.Bald * 100)); // 头发颜色 IList<HairColor> hairColors = face.FaceAttributes.Hair.HairColor; foreach (HairColor hairColor in hairColors) { if (hairColor.Confidence >= 0.1f) { sb.Append(hairColor.Color.ToString()); sb.Append(String.Format(" {0:F1}% ", hairColor.Confidence * 100)); } } // R返回字符串 return sb.ToString(); }
完整代码
using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Text; using System.Threading.Tasks; using System.Windows; // using System.Windows.Controls; // using System.Windows.Data; // using System.Windows.Documents; using System.Windows.Input; using System.Windows.Media; using System.Windows.Media.Imaging; // using System.Windows.Navigation; // using System.Windows.Shapes; using Microsoft.Azure.CognitiveServices.Vision.Face; using Microsoft.Azure.CognitiveServices.Vision.Face.Models; namespace C14_WPF_EmotionAcuiring { /// <summary> /// Interaction logic for MainWindow.xaml /// </summary> public partial class MainWindow : Window { // <snippet_mainwindow_fields> // Add your Face subscription key to your environment variables. private static string subscriptionKey = "xxxxxxxxxxxxxxxxxxxxxxxxxxxx"; // Add your Face endpoint to your environment variables. private static string faceEndpoint = "https://cnsoft.cognitiveservices.azure.cn/"; private readonly IFaceClient faceClient = new FaceClient( new ApiKeyServiceClientCredentials(subscriptionKey), new System.Net.Http.DelegatingHandler[] { }); // The list of detected faces. private IList<DetectedFace> faceList; // The list of descriptions for the detected faces. private string[] faceDescriptions; // The resize factor for the displayed image. private double resizeFactor; private const string defaultStatusBarText = "Place the mouse pointer over a face to see the face description."; // </snippet_mainwindow_fields> // <snippet_mainwindow_constructor> public MainWindow() { InitializeComponent(); if (Uri.IsWellFormedUriString(faceEndpoint, UriKind.Absolute)) { faceClient.Endpoint = faceEndpoint; } else { MessageBox.Show(faceEndpoint, "Invalid URI", MessageBoxButton.OK, MessageBoxImage.Error); Environment.Exit(0); } } // </snippet_mainwindow_constructor> // <snippet_browsebuttonclick_start> // Displays the image and calls UploadAndDetectFaces. private async void BrowseButton_Click(object sender, RoutedEventArgs e) { // Get the image file to scan from the user. var openDlg = new Microsoft.Win32.OpenFileDialog(); openDlg.Filter = "JPEG Image(*.jpg)|*.jpg"; bool? result = openDlg.ShowDialog(this); // Return if canceled. if (!(bool)result) { return; } // Display the image file. string filePath = openDlg.FileName; Uri fileUri = new Uri(filePath); BitmapImage bitmapSource = new BitmapImage(); bitmapSource.BeginInit(); bitmapSource.CacheOption = BitmapCacheOption.None; bitmapSource.UriSource = fileUri; bitmapSource.EndInit(); FacePhoto.Source = bitmapSource; // </snippet_browsebuttonclick_start> // <snippet_browsebuttonclick_mid> // Detect any faces in the image. Title = "Detecting..."; faceList = await UploadAndDetectFaces(filePath); Title = String.Format( "Detection Finished. {0} face(s) detected", faceList.Count); if (faceList.Count > 0) { // Prepare to draw rectangles around the faces. DrawingVisual visual = new DrawingVisual(); DrawingContext drawingContext = visual.RenderOpen(); drawingContext.DrawImage(bitmapSource, new Rect(0, 0, bitmapSource.Width, bitmapSource.Height)); double dpi = bitmapSource.DpiX; // Some images don't contain dpi info. resizeFactor = (dpi == 0) ? 1 : 96 / dpi; faceDescriptions = new String[faceList.Count]; for (int i = 0; i < faceList.Count; ++i) { DetectedFace face = faceList[i]; // Draw a rectangle on the face. drawingContext.DrawRectangle( Brushes.Transparent, new Pen(Brushes.Red, 2), new Rect( face.FaceRectangle.Left * resizeFactor, face.FaceRectangle.Top * resizeFactor, face.FaceRectangle.Width * resizeFactor, face.FaceRectangle.Height * resizeFactor ) ); // Store the face description. faceDescriptions[i] = FaceDescription(face); } if (faceList.Count > 0) { TheEmotion.Text = "复制下面全部信息:\n" + faceDescriptions[0]; } drawingContext.Close(); // Display the image with the rectangle around the face. RenderTargetBitmap faceWithRectBitmap = new RenderTargetBitmap( (int)(bitmapSource.PixelWidth * resizeFactor), (int)(bitmapSource.PixelHeight * resizeFactor), 96, 96, PixelFormats.Pbgra32); faceWithRectBitmap.Render(visual); FacePhoto.Source = faceWithRectBitmap; // Set the status bar text. faceDescriptionStatusBar.Text = defaultStatusBarText; } // </snippet_browsebuttonclick_mid> // <snippet_browsebuttonclick_end> } // </snippet_browsebuttonclick_end> // <snippet_mousemove_start> // Displays the face description when the mouse is over a face rectangle. private void FacePhoto_MouseMove(object sender, MouseEventArgs e) { // </snippet_mousemove_start> // <snippet_mousemove_mid> // If the REST call has not completed, return. if (faceList == null) return; // Find the mouse position relative to the image. Point mouseXY = e.GetPosition(FacePhoto); ImageSource imageSource = FacePhoto.Source; BitmapSource bitmapSource = (BitmapSource)imageSource; // Scale adjustment between the actual size and displayed size. var scale = FacePhoto.ActualWidth / (bitmapSource.PixelWidth / resizeFactor); // Check if this mouse position is over a face rectangle. bool mouseOverFace = false; for (int i = 0; i < faceList.Count; ++i) { FaceRectangle fr = faceList[i].FaceRectangle; double left = fr.Left * scale; double top = fr.Top * scale; double width = fr.Width * scale; double height = fr.Height * scale; // Display the face description if the mouse is over this face rectangle. if (mouseXY.X >= left && mouseXY.X <= left + width && mouseXY.Y >= top && mouseXY.Y <= top + height) { faceDescriptionStatusBar.Text = faceDescriptions[i]; mouseOverFace = true; break; } } // String to display when the mouse is not over a face rectangle. if (!mouseOverFace) faceDescriptionStatusBar.Text = defaultStatusBarText; // </snippet_mousemove_mid> // <snippet_mousemove_end> } // </snippet_mousemove_end> // <snippet_uploaddetect> // Uploads the image file and calls DetectWithStreamAsync. private async Task<IList<DetectedFace>> UploadAndDetectFaces(string imageFilePath) { // The list of Face attributes to return. IList<FaceAttributeType?> faceAttributes = new FaceAttributeType?[] { FaceAttributeType.Gender, FaceAttributeType.Age, FaceAttributeType.Smile, FaceAttributeType.Emotion, FaceAttributeType.Glasses, FaceAttributeType.Hair }; // Call the Face API. try { using (Stream imageFileStream = File.OpenRead(imageFilePath)) { // The second argument specifies to return the faceId, while // the third argument specifies not to return face landmarks. IList<DetectedFace> faceList = await faceClient.Face.DetectWithStreamAsync( imageFileStream, true, false, faceAttributes); return faceList; } } // Catch and display Face API errors. catch (APIErrorException f) { MessageBox.Show(f.Message); return new List<DetectedFace>(); } // Catch and display all other errors. catch (Exception e) { MessageBox.Show(e.Message, "Error"); return new List<DetectedFace>(); } } // </snippet_uploaddetect> // <snippet_facedesc> // Creates a string out of the attributes describing the face. private string FaceDescription(DetectedFace face) { StringBuilder sb = new StringBuilder(); sb.Append("Face: "); // Add the gender, age, and smile. sb.Append(face.FaceAttributes.Gender); sb.Append(", "); sb.Append(face.FaceAttributes.Age); sb.Append(", "); sb.Append(String.Format("smile {0:F1}% ", face.FaceAttributes.Smile * 100)); sb.Append("\n"); // Add the emotions. Display all emotions over 10%. Emotion emotionScores = face.FaceAttributes.Emotion; sb.Append("anger: "+ emotionScores.Anger + "\n"); sb.Append("contempt: " + emotionScores.Contempt + "\n"); sb.Append("disgust: " + emotionScores.Disgust + "\n"); sb.Append("fear: " + emotionScores.Fear + "\n"); sb.Append("happiness: " + emotionScores.Happiness + "\n"); sb.Append("neutral: " + emotionScores.Neutral + "\n"); sb.Append("sadness: " + emotionScores.Sadness + "\n"); sb.Append("surprise: " + emotionScores.Surprise + "\n"); // Add glasses. sb.Append("ifhasGlasses: "+face.FaceAttributes.Glasses); sb.Append("\n "); // Add hair. sb.Append("Hair: "); // Display baldness confidence if over 1%. if (face.FaceAttributes.Hair.Bald >= 0.01f) sb.Append(String.Format("bald {0:F1}% ", face.FaceAttributes.Hair.Bald * 100)); // Display all hair color attributes over 10%. IList<HairColor> hairColors = face.FaceAttributes.Hair.HairColor; foreach (HairColor hairColor in hairColors) { if (hairColor.Confidence >= 0.1f) { sb.Append(hairColor.Color.ToString()); sb.Append(String.Format(" {0:F1}% ", hairColor.Confidence * 100)); } } // Return the built string. return sb.ToString(); } // </snippet_facedesc> } }
这篇关于使用人脸客户端库快速实现对面部的分析---C#的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2022-03-01沐雪多租宝商城源码从.NetCore3.1升级到.Net6的步骤
- 2024-12-06使用Microsoft.Extensions.AI在.NET中生成嵌入向量
- 2024-11-18微软研究:RAG系统的四个层次提升理解与回答能力
- 2024-11-15C#中怎么从PEM格式的证书中提取公钥?-icode9专业技术文章分享
- 2024-11-14云架构设计——如何用diagrams.net绘制专业的AWS架构图?
- 2024-05-08首个适配Visual Studio平台的国产智能编程助手CodeGeeX正式上线!C#程序员必备效率神器!
- 2024-03-30C#设计模式之十六迭代器模式(Iterator Pattern)【行为型】
- 2024-03-29c# datetime tryparse
- 2024-02-21list find index c#
- 2024-01-24convert toint32 c#