【yolov5 6.0 源码解析】---utils /datasets.py
2021/12/29 11:37:52
本文主要是介绍【yolov5 6.0 源码解析】---utils /datasets.py,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
yolov5中数据读取并转换成训练格式
主要涉及到四点:
- 数据读取
- cache缓存
- 数据增强与label对应
- 其他一些辅助函数
以下是自己的一些理解,如有纰漏,欢迎交流
class LoadImagesAndLabels(Dataset)
class LoadImagesAndLabels(Dataset): # YOLOv5 train_loader/val_loader, loads images and labels for training and validation cache_version = 0.5 # dataset labels *.cache version # 初始化 def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False, cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''): self.img_size = img_size # 图片大小 self.augment = augment # 是否图片增强 self.hyp = hyp # 超参 self.image_weights = image_weights # 图片权重 self.rect = False if image_weights else rect # 图片长宽比不resize成1 self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training) self.mosaic_border = [-img_size // 2, -img_size // 2] # 如果mosaic, 边界 self.stride = stride # 步长 self.path = path # 路径 self.albumentations = Albumentations() if augment else None # 是否使用 Albumentations 库做数据增强 try: f = [] # image files for p in path if isinstance(path, list) else [path]: p = Path(p) # 字符串的路径转成poxis路径 os-agnostic if p.is_dir(): # dir 匹配所有符合条件的文件,并以list 返回; recursive 是是否采用递归的方式 f += glob.glob(str(p / '**' / '*.*'), recursive=True) # f = list(p.rglob('**/*.*')) # pathlib elif p.is_file(): # file(以文件的方式保存路径名,如coco.yaml ) with open(p, 'r') as t: t = t.read().strip().splitlines() # 以list方式保存每一行路径字符串 parent = str(p.parent) + os.sep f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path # f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib) else: raise Exception(f'{prefix}{p} does not exist') self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS]) # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in img_formats]) # pathlib assert self.img_files, f'{prefix}No images found' except Exception as e: raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {HELP_URL}') # Check cache self.label_files = img2label_paths(self.img_files) # 将img图片路径转换成对应label路径 cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache') try: cache, exists = np.load(cache_path, allow_pickle=True).item(), True # load dict assert cache['version'] == self.cache_version # same version assert cache['hash'] == get_hash(self.label_files + self.img_files) # same hash except: # 否则重新缓存labels cache, exists = self.cache_labels(cache_path, prefix), False # cache # Display cache nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupted, total if exists: d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted" tqdm(None, desc=prefix + d, total=n, initial=n) # display cache results if cache['msgs']: logging.info('\n'.join(cache['msgs'])) # display warnings assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {HELP_URL}' # Read cache [cache.pop(k) for k in ('hash', 'version', 'msgs')] # remove items 将这三个值去掉 留下label,shape,segments labels, shapes, self.segments = zip(*cache.values()) #返回元组组成的list self.labels = list(labels) self.shapes = np.array(shapes, dtype=np.float64) self.img_files = list(cache.keys()) # update 返回key 组成的list self.label_files = img2label_paths(cache.keys()) # update 将imgs 路径转成对应的labels 路径 if single_cls: # 如果多类别合并成一个类别, 标签成 0 for x in self.labels: x[:, 0] = 0 n = len(shapes) # number of images bi = np.floor(np.arange(n) / batch_size).astype(np.int) # 每张图片属于哪个batch的索引 batch index nb = bi[-1] + 1 # number of batches self.batch = bi # batch index of image self.n = n self.indices = range(n) # Rectangular Training if self.rect: # 数据样本长宽比不为1 # Sort by aspect ratio s = self.shapes # wh ar = s[:, 1] / s[:, 0] # aspect ratio irect = ar.argsort() # 将长宽比从小到大排序,返回对应的索引 self.img_files = [self.img_files[i] for i in irect] # 将图片按照长宽比从小到大重新排列img_file self.label_files = [self.label_files[i] for i in irect]# 将图片按照长宽比从小到大重新排列label_file self.labels = [self.labels[i] for i in irect] # 将图片按照长宽比从小到大重新排列label self.shapes = s[irect] # wh ar = ar[irect] # h/w # Set training image shapes shapes = [[1, 1]] * nb for i in range(nb): # 对于每一个batch ari = ar[bi == i] # 属于该batch的长宽比 mini, maxi = ari.min(), ari.max() if maxi < 1: # 长宽比[1, <1的值] shapes[i] = [maxi, 1] elif mini > 1: shapes[i] = [1, 1 / mini] # 对于每个batch,bacth_shape 的长宽比取最大的,或者宽长比最大的那个为整个batch的,同时为了保证上下采样像素点为整数 self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM) self.imgs, self.img_npy = [None] * n, [None] * n if cache_images: # 缓存图片 if cache_images == 'disk': # 将图片缓存进disk中 self.im_cache_dir = Path(Path(self.img_files[0]).parent.as_posix() + '_npy') # 图片缓存文件夹 self.img_npy = [self.im_cache_dir / Path(f).with_suffix('.npy').name for f in self.img_files] # 将图片缓存成.npy文件 self.im_cache_dir.mkdir(parents=True, exist_ok=True) # 创建文件夹缓存文件 gb = 0 # Gigabytes of cached images self.img_hw0, self.img_hw = [None] * n, [None] * n results = ThreadPool(NUM_THREADS).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) # 多进程加载图片。并将图片resize下,返回resize后的图片和原始长宽比。 pbar = tqdm(enumerate(results), total=n) # 以进度条的型式显示出来 for i, x in pbar: if cache_images == 'disk': if not self.img_npy[i].exists():# npy图片文件不存在,重新保存 np.save(self.img_npy[i].as_posix(), x[0]) gb += self.img_npy[i].stat().st_size # 文件大小 else: self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i) gb += self.imgs[i].nbytes pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB {cache_images})' pbar.close() def cache_labels(self, path=Path('./labels.cache'), prefix=''): # Cache dataset labels, check images and read shapes x = {} # dict nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..." with Pool(NUM_THREADS) as pool: # Pool python 多进程的一个子模块, 可以提供指定数量的进程给用户使用,一般用于需要执行的目标很多,而手动限制进程数量又繁琐时,如果目标少且不用控制进程数量的时候,用Process 类。 pbar = tqdm(pool.imap(verify_image_label, zip(self.img_files, self.label_files, repeat(prefix))), desc=desc, total=len(self.img_files)) # tqdm 进度条显示; # pool.imap 输入函数,迭代器,返回iterable # verify_image_label 验证图片和label 可读,并将label转换成统一格式,拱后面使用。 for im_file, l, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar: nm += nm_f nf += nf_f ne += ne_f nc += nc_f if im_file: # 如果图片和label都有, 将标签,图片形状,分割点以字典的方式保存下来 x[im_file] = [l, shape, segments] if msg: # 如果有miss 或者empty 将对于msg 保存下来 msgs.append(msg) pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupted" pbar.close() if msgs: logging.info('\n'.join(msgs)) if nf == 0: logging.info(f'{prefix}WARNING: No labels found in {path}. See {HELP_URL}') x['hash'] = get_hash(self.label_files + self.img_files) # 将标签路径和图片路径以hash加密算法保存下来 x['results'] = nf, nm, ne, nc, len(self.img_files) # # found , missing, empty, corrupt x['msgs'] = msgs # warnings x['version'] = self.cache_version # cache version try: np.save(path, x) # save cache for next time path.with_suffix('.cache.npy').rename(path) # remove .npy suffix 将numpy保存的label.cache.npy 重命名为label.cache logging.info(f'{prefix}New cache created: {path}') except Exception as e: logging.info(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}') # path not writeable return x def __len__(self): return len(self.img_files) # 返回图片数量 # def __iter__(self): # self.count = -1 # print('ran dataset iter') # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF) # return self def __getitem__(self, index): index = self.indices[index] # linear, shuffled, or image_weights hyp = self.hyp # 超参 mosaic = self.mosaic and random.random() < hyp['mosaic'] # hyp['mosaic'] 取权重,大于随机值mosaic if mosaic: # Load mosaic img, labels = load_mosaic(self, index) # 输出img和标签 shapes = None # MixUp augmentation mixup在mosaic里面运行 if random.random() < hyp['mixup']: img, labels = mixup(img, labels, *load_mosaic(self, random.randint(0, self.n - 1))) #*load_mosaic(self, random.randint(0, self.n - 1)) 随机取图片 与之前的img 融合 else: # Load image img, (h0, w0), (h, w) = load_image(self, index) # 返回解析的图片、以前的长宽比、resize后的长宽比 # Letterbox shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment) # 将img 以letterbox方式 resize到指定长宽 shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling labels = self.labels[index].copy() if labels.size: # normalized xywh to pixel xyxy format labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1]) if self.augment: img, labels = random_perspective(img, labels, degrees=hyp['degrees'], translate=hyp['translate'], scale=hyp['scale'], shear=hyp['shear'], perspective=hyp['perspective']) nl = len(labels) # number of labels if nl: # 再转成yolo格式的label labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3) if self.augment: # 数据增强 # Albumentations img, labels = self.albumentations(img, labels) nl = len(labels) # update after albumentations # HSV color-space augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v']) # Flip up-down 上下翻转 if random.random() < hyp['flipud']: img = np.flipud(img) if nl: labels[:, 2] = 1 - labels[:, 2] # Flip left-right 左右翻转 if random.random() < hyp['fliplr']: img = np.fliplr(img) if nl: labels[:, 1] = 1 - labels[:, 1] # Cutouts # labels = cutout(img, labels, p=0.5) labels_out = torch.zeros((nl, 6)) # 6 1-类别标签 4- box 1-对应batch if nl: labels_out[:, 1:] = torch.from_numpy(labels) # Convert img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB img = np.ascontiguousarray(img) # np.ascontiguousarray 将内存不连续的数组,转换成内存连续的数组 return torch.from_numpy(img), labels_out, self.img_files[index], shapes @staticmethod def collate_fn(batch): img, label, path, shapes = zip(*batch) # transposed for i, l in enumerate(label): l[:, 0] = i # add target image index for build_targets() return torch.stack(img, 0), torch.cat(label, 0), path, shapes @staticmethod def collate_fn4(batch): img, label, path, shapes = zip(*batch) # transposed n = len(shapes) // 4 img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n] ho = torch.tensor([[0., 0, 0, 1, 0, 0]]) wo = torch.tensor([[0., 0, 1, 0, 0, 0]]) s = torch.tensor([[1, 1, .5, .5, .5, .5]]) # scale for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW i *= 4 if random.random() < 0.5: im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[ 0].type(img[i].type()) l = label[i] else: im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2) l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s img4.append(im) label4.append(l) for i, l in enumerate(label4): l[:, 0] = i # add target image index for build_targets() return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4
整体如下:
# YOLOv5
这篇关于【yolov5 6.0 源码解析】---utils /datasets.py的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-11有哪些好用的家政团队管理工具?
- 2025-01-11营销人必看的GTM五个指标
- 2025-01-11办公软件在直播电商前期筹划中的应用与推荐
- 2025-01-11提升组织效率:上级管理者如何优化跨部门任务分配
- 2025-01-11酒店精细化运营背后的协同工具支持
- 2025-01-11跨境电商选品全攻略:工具使用、市场数据与选品策略
- 2025-01-11数据驱动酒店管理:在线工具的核心价值解析
- 2025-01-11cursor试用出现:Too many free trial accounts used on this machine 的解决方法
- 2025-01-11百万架构师第十四课:源码分析:Spring 源码分析:深入分析IOC那些鲜为人知的细节|JavaGuide
- 2025-01-11不得不了解的高效AI办公工具API