Python数据结构与算法总结(一)
2022/1/2 20:07:33
本文主要是介绍Python数据结构与算法总结(一),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
算法的概念
算法是计算机处理信息的本质,因为计算机程序本质上是一个算法来告诉计算机确切的步骤来执行一个指定的任务。一般地,当算法在处理信息时,会从输入设备或数据的存储地址读取数据,把结果写入输出设备或某个存储地址供以后再调用。
算法的五大特性
1.输入: 算法具有0个或多个输入
2.输出: 算法至少有1个或多个输出
3.有穷性: 算法在有限的步骤之后会自动结束而不会无限循环,并且每一个步骤可以在可接受的时间内完成
4.确定性:算法中的每一步都有确定的含义,不会出现二义性
5.可行性:算法的每一步都是可行的,也就是说每一步都能够执行有限的次数完成
下面看具体实例:
引入
先来看一道题:
如果 a+b+c=1000,且 a2+b2=c^2(a,b,c 为自然数),如何求出所有a、b、c可能的组合?
第一次尝试
import time start_time = time.time() #注意是三重循环 for a in range(0, 1001): for b in range(0, 1001): for c in range(0, 1001): if a**2 + b**2 == c**2 and a+b+c == 1000: print("a, b, c: %d, %d, %d" % (a, b, c)) end_time = time.time() print("elapsed: %f" % (end_time - start_time)) print("complete!")
第二次尝试
import time start_time = time.time() #注意是两重循环 for a in range(0, 1001): for b in range(0, 1001-a): c = 1000 - a - b if a**2 + b**2 == c**2: print("a, b, c: %d, %d, %d" % (a, b, c)) end_time = time.time() print("elapsed: %f" % (end_time - start_time)) print("complete!")
算法效率衡量
执行时间反应算法效率:
对于同一问题,我们给出了两种解决算法,在两种算法的实现中,我们对程序执行的时间进行了测算,发现两段程序执行的时间相差悬殊(214.583347秒相比于0.182897秒),由此我们可以得出结论:实现算法程序的执行时间可以反应出算法的效率,即算法的优劣。
单靠时间值绝对可信吗?
假设我们将第二次尝试的算法程序运行在一台配置古老性能低下的计算机中,情况会如何?很可能运行的时间并不会比在我们的电脑中运行算法一的214.583347秒快多少。
单纯依靠运行的时间来比较算法的优劣并不一定是客观准确的!
程序的运行离不开计算机环境(包括硬件和操作系统),这些客观原因会影响程序运行的速度并反应在程序的执行时间上。那么如何才能客观的评判一个算法的优劣呢?
时间复杂度与“大O记法”
我们假定计算机执行算法每一个基本操作的时间是固定的一个时间单位,那么有多少个基本操作就代表会花费多少时间单位。算然对于不同的机器环境而言,确切的单位时间是不同的,但是对于算法进行多少个基本操作(即花费多少时间单位)在规模数量级上却是相同的,由此可以忽略机器环境的影响而客观的反应算法的时间效率。
对于算法的时间效率,我们可以用“大O记法”来表示。
“大O记法”:对于单调的整数函数f,如果存在一个整数函数g和实常数c>0,使得对于充分大的n总有f(n)<=c*g(n),就说函数g是f的一个渐近函数(忽略常数),记为f(n)=O(g(n))。也就是说,在趋向无穷的极限意义下,函数f的增长速度受到函数g的约束,亦即函数f与函数g的特征相似。
时间复杂度:假设存在函数g,使得算法A处理规模为n的问题示例所用时间为T(n)=O(g(n)),则称O(g(n))为算法A的渐近时间复杂度,简称时间复杂度,记为T(n)
如何理解“大O记法”
对于算法进行特别具体的细致分析虽然很好,但在实践中的实际价值有限。对于算法的时间性质和空间性质,最重要的是其数量级和趋势,这些是分析算法效率的主要部分。而计量算法基本操作数量的规模函数中那些常量因子可以忽略不计。例如,可以认为3n2和100n2属于同一个量级,如果两个算法处理同样规模实例的代价分别为这两个函数,就认为它们的效率“差不多”,都为n2级。
时间复杂度的几条基本计算规则
1.基本操作,即只有常数项,认为其时间复杂度为O(1)
2.顺序结构,时间复杂度按加法进行计算
3.循环结构,时间复杂度按乘法进行计算
4.分支结构,时间复杂度取最大值
5.判断一个算法的效率时,往往只需要关注操作数量的最高次项,其它次要项和常数项可以忽略
6.在没有特殊说明时,我们所分析的算法的时间复杂度都是指最坏时间复杂度
数据结构
我们如何用Python中的类型来保存一个班的学生信息? 如果想要快速的通过学生姓名获取其信息呢?
实际上当我们在思考这个问题的时候,我们已经用到了数据结构。列表和字典都可以存储一个班的学生信息,但是想要在列表中获取一名同学的信息时,就要遍历这个列表,其时间复杂度为O(n),而使用字典存储时,可将学生姓名作为字典的键,学生信息作为值,进而查询时不需要遍历便可快速获取到学生信息,其时间复杂度为O(1)。
我们为了解决问题,需要将数据保存下来,然后根据数据的存储方式来设计算法实现进行处理,那么数据的存储方式不同就会导致需要不同的算法进行处理。我们希望算法解决问题的效率越快越好,于是我们就需要考虑数据究竟如何保存的问题,这就是数据结构。
顺序表
顺序表的基本形式
图a表示的是顺序表的基本形式,数据元素本身连续存储,每个元素所占的存储单元大小固定相同,元素的下标是其逻辑地址,而元素存储的物理地址(实际内存地址)可以通过存储区的起始地址Loc (e0)加上逻辑地址(第i个元素)与存储单元大小(c)的乘积计算而得,即:
Loc(ei) = Loc(e0) + c*i
故,访问指定元素时无需从头遍历,通过计算便可获得对应地址,其时间复杂度为O(1)。
如果元素的大小不统一,则须采用图b的元素外置的形式,将实际数据元素另行存储,而顺序表中各单元位置保存对应元素的地址信息(即链接)。由于每个链接所需的存储量相同,通过上述公式,可以计算出元素链接的存储位置,而后顺着链接找到实际存储的数据元素。注意,图b中的c不再是数据元素的大小,而是存储一个链接地址所需的存储量,这个量通常很小。
图b这样的顺序表也被称为对实际数据的索引,这是最简单的索引结构。
Python中的顺序表
list的基本实现技术
Python标准类型list就是一种元素个数可变的线性表,可以加入和删除元素,并在各种操作中维持已有元素的顺序(即保序),而且还具有以下行为特征:
基于下标(位置)的高效元素访问和更新,时间复杂度应该是O(1);
为满足该特征,应该采用顺序表技术,表中元素保存在一块连续的存储区中。
允许任意加入元素,而且在不断加入元素的过程中,表对象的标识(函数id得到的值)不变。
为满足该特征,就必须能更换元素存储区,并且为保证更换存储区时list对象的标识id不变,只能采用分离式实现技术。
在Python的官方实现中,list就是一种采用分离式技术实现的动态顺序表。这就是为什么用list.append(x) (或 list.insert(len(list), x),即尾部插入)比在指定位置插入元素效率高的原因。
链表
顺序表的构建需要预先知道数据大小来申请连续的存储空间,而在进行扩充时又需要进行数据的搬迁,所以使用起来并不是很灵活。
链表结构可以充分利用计算机内存空间,实现灵活的内存动态管理
链表的定义
链表(Linked list)是一种常见的基础数据结构,是一种线性表,但是不像顺序表一样连续存储数据,而是在每一个节点(数据存储单元)里存放下一个节点的位置信息(即地址)。
单向链表
单向链表也叫单链表,是链表中最简单的一种形式,它的每个节点包含两个域,一个信息域(元素域)和一个链接域。这个链接指向链表中的下一个节点,而最后一个节点的链接域则指向一个空值。
节点实现
class SingleNode(object): """单链表的结点""" def __init__(self,item): # _item存放数据元素 self.item = item # _next是下一个节点的标识 self.next = None
单链表的实现
class SingleLinkList(object): """单链表""" def __init__(self): self._head = None def is_empty(self): """判断链表是否为空""" return self._head == None def length(self): """链表长度""" # cur初始时指向头节点 cur = self._head count = 0 # 尾节点指向None,当未到达尾部时 while cur != None: count += 1 # 将cur后移一个节点 cur = cur.next return count def travel(self): """遍历链表""" cur = self._head while cur != None: print cur.item, cur = cur.next print ""
双向链表
一种更复杂的链表是“双向链表”或“双面链表”。每个节点有两个链接:一个指向前一个节点,当此节点为第一个节点时,指向空值;而另一个指向下一个节点,当此节点为最后一个节点时,指向空值。
class Node(object): """双向链表节点""" def __init__(self, item): self.item = item self.next = None self.prev = None class DLinkList(object): """双向链表""" def __init__(self): self._head = None def is_empty(self): """判断链表是否为空""" return self._head == None def length(self): """返回链表的长度""" cur = self._head count = 0 while cur != None: count += 1 cur = cur.next return count def travel(self): """遍历链表""" cur = self._head while cur != None: print cur.item, cur = cur.next print "" def add(self, item): """头部插入元素""" node = Node(item) if self.is_empty(): # 如果是空链表,将_head指向node self._head = node else: # 将node的next指向_head的头节点 node.next = self._head # 将_head的头节点的prev指向node self._head.prev = node # 将_head 指向node self._head = node def append(self, item): """尾部插入元素""" node = Node(item) if self.is_empty(): # 如果是空链表,将_head指向node self._head = node else: # 移动到链表尾部 cur = self._head while cur.next != None: cur = cur.next # 将尾节点cur的next指向node cur.next = node # 将node的prev指向cur node.prev = cur def search(self, item): """查找元素是否存在""" cur = self._head while cur != None: if cur.item == item: return True cur = cur.next return False
栈
栈(stack),有些地方称为堆栈,是一种容器,可存入数据元素、访问元素、删除元素,它的特点在于只能允许在容器的一端(称为栈顶端指标,英语:top)进行加入数据(英语:push)和输出数据(英语:pop)的运算。没有了位置概念,保证任何时候可以访问、删除的元素都是此前最后存入的那个元素,确定了一种默认的访问顺序。
由于栈数据结构只允许在一端进行操作,因而按照后进先出(LIFO, Last In First Out)的原理运作。
队列
队列(queue)是只允许在一端进行插入操作,而在另一端进行删除操作的线性表。
队列是一种先进先出的(First In First Out)的线性表,简称FIFO。允许插入的一端为队尾,允许删除的一端为队头。队列不允许在中间部位进行操作!假设队列是q=(a1,a2,……,an),那么a1就是队头元素,而an是队尾元素。这样我们就可以删除时,总是从a1开始,而插入时,总是在队列最后。这也比较符合我们通常生活中的习惯,排在第一个的优先出列,最后来的当然排在队伍最后。
结束:
以上是Python中常用到的数据结构,下个回合咱们再来一起聊一聊python中常用到的搜索与排序算法。
这篇关于Python数据结构与算法总结(一)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-03用FastAPI掌握Python异步IO:轻松实现高并发网络请求处理
- 2025-01-02封装学习:Python面向对象编程基础教程
- 2024-12-28Python编程基础教程
- 2024-12-27Python编程入门指南
- 2024-12-27Python编程基础
- 2024-12-27Python编程基础教程
- 2024-12-27Python编程基础指南
- 2024-12-24Python编程入门指南
- 2024-12-24Python编程基础入门
- 2024-12-24Python编程基础:变量与数据类型