MySQL为什么"错误"选择代价更大的索引

2022/1/10 19:03:40

本文主要是介绍MySQL为什么"错误"选择代价更大的索引,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

1.问题描述

群友提出问题,表里有两个列c1、c2,分别为INT、VARCHAR类型,且分别创建了unique key。

SQL查询的条件是 WHERE c1 = ? AND c2 = ?,用EXPLAIN查看执行计划,发现优化器优先选择了VARCHAR类型的c2列索引。

他表示很不理解,难道不应该选择看起来代价更小的INT类型的c1列吗?

2.问题复现

创建测试表t1:

[root@yejr.run]> CREATE TABLE `t1` (
  `c1` int NOT NULL AUTO_INCREMENT,
  `c2` int unsigned NOT NULL,
  `c3` varchar(20) NOT NULL,
  `c4` varchar(20) NOT NULL,
  PRIMARY KEY (`c1`),
  UNIQUE KEY `k3` (`c3`),
  UNIQUE KEY `k2` (`c2`)
) ENGINE=InnoDB;

利用 mysql_random_data_load 写入一万行数据:

mysql_random_data_load -h127.0.0.1 -uuser -p123456 wang t1 10000

查看执行计划:

mysql> EXPLAIN SELECT * FROM t1 WHERE c2 = 950391508 AND c3 = 'Patrick Price'\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: t1
   partitions: NULL
         type: const
possible_keys: k3,k2
          key: k3
      key_len: 82
          ref: const
         rows: 1
     filtered: 100.00
        Extra: NULL
1 row in set, 1 warning (0.01 sec)

mysql> 

可以看到优化器的确选择了 k3 索引,而非"预期"的 k2 索引,这是为什么呢?

3.问题分析

其实原因很简单粗暴:优化器认为这两个索引选择的代价都是一样的,只是优先选中排在前面的那个索引而已。

再建一个相同的表 t2,只不过把 k2、k3 的索引创建顺序对调下:

[root@yejr.run]> CREATE TABLE `t2` (
  `c1` int NOT NULL AUTO_INCREMENT,
  `c2` int unsigned NOT NULL,
  `c3` varchar(20) NOT NULL,
  `c4` varchar(20) NOT NULL,
  PRIMARY KEY (`c1`),
  UNIQUE KEY `k2` (`c2`),
  UNIQUE KEY `k3` (`c3`)
) ENGINE=InnoDB;

再次利用利用 mysql_random_data_load 写入一万行数据:

mysql_random_data_load -h127.0.0.1 -uuser -p123456 wang t2 10000

再查看执行计划:

mysql> EXPLAIN SELECT * FROM t2 WHERE c2 = 1051998464 AND c3 = 'Tammy Bell'\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: t2
   partitions: NULL
         type: const
possible_keys: k2,k3
          key: k2
      key_len: 4
          ref: const
         rows: 1
     filtered: 100.00
        Extra: NULL
1 row in set, 1 warning (0.01 sec)

mysql> 

我们利用 EXPLAIN ANALYZE 来查看下两次执行计划的代价对比:

-- 查看t1表执行计划代价
mysql> EXPLAIN ANALYZE SELECT * FROM t1 WHERE c2 = 950391508 AND c3 = 'Patrick Price'\G
*************************** 1. row ***************************
EXPLAIN: -> Rows fetched before execution  (cost=0.00..0.00 rows=1) (actual time=0.002..0.003 rows=1 loops=1)

1 row in set (0.00 sec)

mysql> 

-- 查看t2表执行计划代价
mysql> EXPLAIN ANALYZE SELECT * FROM t2 WHERE c2 = 1051998464 AND c3 = 'Tammy Bell'\G
*************************** 1. row ***************************
EXPLAIN: -> Rows fetched before execution  (cost=0.00..0.00 rows=1) (actual time=0.002..0.003 rows=1 loops=1)

1 row in set (0.00 sec)

mysql> 

可以看到,很明显代价都是一样的。

再利用 OPTIMIZE_TRACE 查看执行计划,也能看到两个SQL的代价是一样的(重点查看rows_estimation部分):

查看t1表执行计划代价

--开启OPTIMIZER_TRACE功能,并设置要展示的数据条目数:
set optimizer_trace="enabled=on",end_markers_in_json=on;

-- 查看t1表执行计划代价
mysql> SELECT * FROM t1 WHERE c2 = 950391508 AND c3 = 'Patrick Price'\G
*************************** 1. row ***************************
c1: 55
c2: 950391508
c3: Patrick Price
c4: Roger Harvey
1 row in set (0.00 sec)

mysql> 
mysql> SELECT * FROM INFORMATION_SCHEMA.OPTIMIZER_TRACE limit 30 \G;
*************************** 1. row ***************************
                            QUERY: SELECT * FROM t1 WHERE c2 = 950391508 AND c3 = 'Patrick Price'
                            TRACE: {
  "steps": [
    {
      "join_preparation": {
        "select#": 1,
        "steps": [
          {
            "expanded_query": "/* select#1 */ select `t1`.`c1` AS `c1`,`t1`.`c2` AS `c2`,`t1`.`c3` AS `c3`,`t1`.`c4` AS `c4` from `t1` where ((`t1`.`c2` = 950391508) and (`t1`.`c3` = 'Patrick Price'))"
          }
        ] /* steps */
      } /* join_preparation */
    },
    {
      "join_optimization": {
        "select#": 1,
        "steps": [
          {
            "condition_processing": {
              "condition": "WHERE",
              "original_condition": "((`t1`.`c2` = 950391508) and (`t1`.`c3` = 'Patrick Price'))",
              "steps": [
                {
                  "transformation": "equality_propagation",
                  "resulting_condition": "(multiple equal(950391508, `t1`.`c2`) and multiple equal('Patrick Price', `t1`.`c3`))"
                },
                {
                  "transformation": "constant_propagation",
                  "resulting_condition": "(multiple equal(950391508, `t1`.`c2`) and multiple equal('Patrick Price', `t1`.`c3`))"
                },
                {
                  "transformation": "trivial_condition_removal",
                  "resulting_condition": "(multiple equal(950391508, `t1`.`c2`) and multiple equal('Patrick Price', `t1`.`c3`))"
                }
              ] /* steps */
            } /* condition_processing */
          },
          {
            "substitute_generated_columns": {
            } /* substitute_generated_columns */
          },
          {
            "table_dependencies": [
              {
                "table": "`t1`",
                "row_may_be_null": false,
                "map_bit": 0,
                "depends_on_map_bits": [
                ] /* depends_on_map_bits */
              }
            ] /* table_dependencies */
          },
          {
            "ref_optimizer_key_uses": [
              {
                "table": "`t1`",
                "field": "c3",
                "equals": "'Patrick Price'",
                "null_rejecting": true
              },
              {
                "table": "`t1`",
                "field": "c2",
                "equals": "950391508",
                "null_rejecting": true
              }
            ] /* ref_optimizer_key_uses */
          },
          {
            "rows_estimation": [
              {
                "table": "`t1`",
                "rows": 1,
                "cost": 1,
                "table_type": "const",
                "empty": false
              }
            ] /* rows_estimation */
          },
          {
            "condition_on_constant_tables": "true",
            "condition_value": true
          },
          {
            "attaching_conditions_to_tables": {
              "original_condition": "true",
              "attached_conditions_computation": [
              ] /* attached_conditions_computation */,
              "attached_conditions_summary": [
              ] /* attached_conditions_summary */
            } /* attaching_conditions_to_tables */
          },
          {
            "refine_plan": [
            ] /* refine_plan */
          }
        ] /* steps */
      } /* join_optimization */
    },
    {
      "join_execution": {
        "select#": 1,
        "steps": [
        ] /* steps */
      } /* join_execution */
    }
  ] /* steps */
}
MISSING_BYTES_BEYOND_MAX_MEM_SIZE: 0
          INSUFFICIENT_PRIVILEGES: 0
1 row in set (0.00 sec)

ERROR: 
No query specified

mysql> 

--分析完成,关闭OPTIMIZER_TRACE
SET optimizer_trace="enabled=off";

查看t2表执行计划代价

--开启OPTIMIZER_TRACE功能,并设置要展示的数据条目数:
set optimizer_trace="enabled=on",end_markers_in_json=on;

-- 查看t2表执行计划代价
mysql> SELECT * FROM t2 WHERE c2 = 1051998464 AND c3 = 'Tammy Bell'\G
*************************** 1. row ***************************
c1: 143
c2: 1051998464
c3: Tammy Bell
c4: Jane Perry
1 row in set (0.00 sec)

mysql> 
mysql> SELECT * FROM INFORMATION_SCHEMA.OPTIMIZER_TRACE limit 30 \G;
*************************** 1. row ***************************
                            QUERY: SELECT * FROM t2 WHERE c2 = 1051998464 AND c3 = 'Tammy Bell'
                            TRACE: {
  "steps": [
    {
      "join_preparation": {
        "select#": 1,
        "steps": [
          {
            "expanded_query": "/* select#1 */ select `t2`.`c1` AS `c1`,`t2`.`c2` AS `c2`,`t2`.`c3` AS `c3`,`t2`.`c4` AS `c4` from `t2` where ((`t2`.`c2` = 1051998464) and (`t2`.`c3` = 'Tammy Bell'))"
          }
        ] /* steps */
      } /* join_preparation */
    },
    {
      "join_optimization": {
        "select#": 1,
        "steps": [
          {
            "condition_processing": {
              "condition": "WHERE",
              "original_condition": "((`t2`.`c2` = 1051998464) and (`t2`.`c3` = 'Tammy Bell'))",
              "steps": [
                {
                  "transformation": "equality_propagation",
                  "resulting_condition": "(multiple equal(1051998464, `t2`.`c2`) and multiple equal('Tammy Bell', `t2`.`c3`))"
                },
                {
                  "transformation": "constant_propagation",
                  "resulting_condition": "(multiple equal(1051998464, `t2`.`c2`) and multiple equal('Tammy Bell', `t2`.`c3`))"
                },
                {
                  "transformation": "trivial_condition_removal",
                  "resulting_condition": "(multiple equal(1051998464, `t2`.`c2`) and multiple equal('Tammy Bell', `t2`.`c3`))"
                }
              ] /* steps */
            } /* condition_processing */
          },
          {
            "substitute_generated_columns": {
            } /* substitute_generated_columns */
          },
          {
            "table_dependencies": [
              {
                "table": "`t2`",
                "row_may_be_null": false,
                "map_bit": 0,
                "depends_on_map_bits": [
                ] /* depends_on_map_bits */
              }
            ] /* table_dependencies */
          },
          {
            "ref_optimizer_key_uses": [
              {
                "table": "`t2`",
                "field": "c2",
                "equals": "1051998464",
                "null_rejecting": true
              },
              {
                "table": "`t2`",
                "field": "c3",
                "equals": "'Tammy Bell'",
                "null_rejecting": true
              }
            ] /* ref_optimizer_key_uses */
          },
          {
            "rows_estimation": [
              {
                "table": "`t2`",
                "rows": 1,
                "cost": 1,
                "table_type": "const",
                "empty": false
              }
            ] /* rows_estimation */
          },
          {
            "condition_on_constant_tables": "true",
            "condition_value": true
          },
          {
            "attaching_conditions_to_tables": {
              "original_condition": "true",
              "attached_conditions_computation": [
              ] /* attached_conditions_computation */,
              "attached_conditions_summary": [
              ] /* attached_conditions_summary */
            } /* attaching_conditions_to_tables */
          },
          {
            "refine_plan": [
            ] /* refine_plan */
          }
        ] /* steps */
      } /* join_optimization */
    },
    {
      "join_execution": {
        "select#": 1,
        "steps": [
        ] /* steps */
      } /* join_execution */
    }
  ] /* steps */
}
MISSING_BYTES_BEYOND_MAX_MEM_SIZE: 0
          INSUFFICIENT_PRIVILEGES: 0
1 row in set (0.00 sec)

ERROR: 
No query specified

mysql>

--分析完成,关闭OPTIMIZER_TRACE
SET optimizer_trace="enabled=off";

所以,优化器认为选择哪个索引都是一样的,就看哪个索引排序更靠前。

从执行SELECT时的debug trace结果也能佐证:

-- 1、 T1表,k3索引在前面
  PRIMARY KEY (`c1`),
  UNIQUE KEY `k3` (`c3`),
  UNIQUE KEY `k2` (`c2`)
  
T@2: | | | | | | | | opt: (null): starting struct
T@2: | | | | | | | | opt: table: "`t1`"
T@2: | | | | | | | | opt: field: "c3"   (C3在前面,因此最后使用k3)
T@2: | | | | | | | | >convert_string
T@2: | | | | | | | | | >alloc_root
T@2: | | | | | | | | | | enter: root: 0x40a8068
T@2: | | | | | | | | | | exit: ptr: 0x4b41ab0
T@2: | | | | | | | | | <alloc_root 304
T@2: | | | | | | | | <convert_string 2610
T@2: | | | | | | | | opt: equals: "'Louise Garrett'" 
T@2: | | | | | | | | opt: null_rejecting: 0
T@2: | | | | | | | | opt: (null): ending struct
T@2: | | | | | | | | opt: Key_use: optimize= 0 used_tables=0x0 ref_table_rows= 18446744073709551615 keypart_map= 1
T@2: | | | | | | | | opt: (null): starting struct
T@2: | | | | | | | | opt: table: "`t1`"
T@2: | | | | | | | | opt: field: "c2"
T@2: | | | | | | | | opt: equals: "22896242"
T@2: | | | | | | | | opt: null_rejecting: 0
T@2: | | | | | | | | opt: null_rejecting: 0
T@2: | | | | | | | | opt: (null): ending struct
T@2: | | | | | | | | opt: Key_use: optimize= 0 used_tables=0x0 ref_table_rows= 18446744073709551615 keypart_map= 1
T@2: | | | | | | | | opt: (null): starting struct
T@2: | | | | | | | | opt: table: "`t1`"
T@2: | | | | | | | | opt: field: "c2"
T@2: | | | | | | | | opt: equals: "22896242"
T@2: | | | | | | | | opt: null_rejecting: 0
T@2: | | | | | | | | opt: (null): ending struct
T@2: | | | | | | | | opt: ref_optimizer_key_uses: ending struct
T@2: | | | | | | | | opt: (null): ending struct

-- 2、 T2表,k2索引在前面
  PRIMARY KEY (`c1`),
  UNIQUE KEY `k2` (`c2`),
  UNIQUE KEY `k3` (`c3`)
  
T@2: | | | | | | | | opt: (null): starting struct
T@2: | | | | | | | | opt: table: "`t2`"
T@2: | | | | | | | | opt: field: "c2" (C2在前面因此使用k2索引)
T@2: | | | | | | | | opt: equals: "22896242"
T@2: | | | | | | | | opt: null_rejecting: 0
T@2: | | | | | | | | opt: (null): ending struct
T@2: | | | | | | | | opt: Key_use: optimize= 0 used_tables=0x0 ref_table_rows= 18446744073709551615 keypart_map= 1
T@2: | | | | | | | | opt: (null): starting struct
T@2: | | | | | | | | opt: table: "`t2`"
T@2: | | | | | | | | opt: field: "c3"
T@2: | | | | | | | | >convert_string
T@2: | | | | | | | | | >alloc_root
T@2: | | | | | | | | | | enter: root: 0x40a8068
T@2: | | | | | | | | | | exit: ptr: 0x4b41ab0
T@2: | | | | | | | | | <alloc_root 304
T@2: | | | | | | | | <convert_string 2610
T@2: | | | | | | | | opt: equals: "'Louise Garrett'"
T@2: | | | | | | | | opt: null_rejecting: 0
T@2: | | | | | | | | opt: (null): ending struct
T@2: | | | | | | | | opt: ref_optimizer_key_uses: ending struct
T@2: | | | | | | | | opt: (null): ending struct

4.问题延伸

到这里,我们不禁有疑问,这两个索引的代价真的是一样吗?

就让我们用 mysqlslap 来做个简单对比测试吧:

-- 测试1:对c2列随机point select
[root@ocky-Linux-8-4 ~]# mysqlslap -h127.0.0.1 -uuser -p123456 --no-drop --create-schema wang -i 3 --number-of-queries 1000000 -q "set @xid = cast(round(rand()*2147265929) as unsigned); select * from t1 where c2 = @xid" -c 8 
mysqlslap: [Warning] Using a password on the command line interface can be insecure.
Benchmark
        Average number of seconds to run all queries: 40.534 seconds
        Minimum number of seconds to run all queries: 39.465 seconds
        Maximum number of seconds to run all queries: 41.746 seconds
        Number of clients running queries: 8
        Average number of queries per client: 125000


-- 测试2:对c3列随机point select
[root@ocky-Linux-8-4 ~]# mysqlslap -h127.0.0.1 -uuser -p123456 --no-drop --create-schema wang -i 3 --number-of-queries 1000000 -q "set @xid = concat('u',cast(round(rand()*2147265929) as unsigned)); select * from t1 where c3 = @xid" -c 8
mysqlslap: [Warning] Using a password on the command line interface can be insecure.
Benchmark
        Average number of seconds to run all queries: 42.275 seconds
        Minimum number of seconds to run all queries: 41.714 seconds
        Maximum number of seconds to run all queries: 43.138 seconds
        Number of clients running queries: 8
        Average number of queries per client: 125000

可以看到,如果是走 c3 列索引,耗时会比走 c2 列索引多出来约 4%(在我的环境下测试的结果,不同环境、不同数据量可能也不同)。

看来,MySQL优化器还是有必要进一步提高的哟 :)

测试使用版本:MySQL 8.0.27(MySQL 5.6.39结果亦是如此)。

原文链接:https://mp.weixin.qq.com/s/8pwqetWeORuDgs2VSSfEkg



这篇关于MySQL为什么"错误"选择代价更大的索引的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程