python爬虫基础知识
2022/1/12 11:05:53
本文主要是介绍python爬虫基础知识,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
一、基础入门
1.1
什么是爬虫
爬虫(spider,又网络爬虫),是指向网站/网络发起请求,获取资源后分析并提取有用数据的程序。
从技术层面来说就是 通过程序模拟浏览器请求站点的行为,把站点返回的HTML代码/JSON数据/二进制数据(图片、视频) 爬到本地,进而提取自己需要的数据,存放起来使用。
1.2
爬虫基本流程
用户获取网络数据的方式:
方式1:浏览器提交请求--->下载网页代码--->解析成页面
方式2:模拟浏览器发送请求(获取网页代码)->提取有用的数据->存放于数据库或文件中
爬虫要做的就是方式2。
1发起请求
使用http库向目标站点发起请求,即发送一个Request
Request包含:请求头、请求体等
Request模块缺陷:不能执行JS 和CSS 代码
2获取响应内容
如果服务器能正常响应,则会得到一个Response
Response包含:html,json,图片,视频等
3解析内容
解析html数据:正则表达式(RE模块)、xpath(主要使用)、beautiful soup、css
解析json数据:json模块
解析二进制数据:以wb的方式写入文件
4保存数据
数据库(MySQL,Mongdb、Redis)或 文件的形式。
1.3
http协议 请求与响应
http协议
Request:用户将自己的信息通过浏览器(socket client)发送给服务器(socket server)
Response:服务器接收请求,分析用户发来的请求信息,然后返回数据(返回的数据中可能包含其他链接,如:图片,js,css等)
ps:浏览器在接收Response后,会解析其内容来显示给用户,而爬虫程序在模拟浏览器发送请求然后接收Response后,是要提取其中的有用数据。
1.3.1 request
(1) 请求方式
常见的请求方式:GET / POST
(2)请求的URL
url全球统一资源定位符,用来定义互联网上一个唯一的资源 例如:一张图片、一个文件、一段视频都可以用url唯一确定
(3)请求头
User-agent:请求头中如果没有user-agent客户端配置,服务端可能将你当做一个非法用户host;
cookies:cookie用来保存登录信息
注意:一般做爬虫都会加上请求头。
请求头需要注意的参数:
-
Referrer:访问源至哪里来(一些大型网站,会通过Referrer 做防盗链策略;所有爬虫也要注意模拟)
-
User-Agent:访问的浏览器(要加上否则会被当成爬虫程序)
-
cookie:请求头注意携带
(4)请求体
请求体 如果是get方式,请求体没有内容 (get请求的请求体放在 url后面参数中,直接能看到) 如果是post方式,请求体是format data
ps:1、登录窗口,文件上传等,信息都会被附加到请求体内 2、登录,输入错误的用户名密码,然后提交,就可以看到post,正确登录后页面通常会跳转,无法捕捉到post
1.3.2 response
(1)响应状态码
-
200:代表成功
-
301:代表跳转
-
404:文件不存在
-
403:无权限访问
-
502:服务器错误
(2)response header
响应头需要注意的参数:Set-Cookie:BDSVRTM=0; path=/:可能有多个,是来告诉浏览器,把cookie保存下来
(3)preview就是网页源代码
json数据
如网页html,图片
二进制数据等
二、基础模块
2.1 requests
requests是python实现的简单易用的HTTP库,是由urllib的升级而来。
开源地址:
https://github.com/kennethreitz/requests
中文API:
http://docs.python-requests.org/zh_CN/latest/index.html
2.2 re 正则表达式
在 Python 中使用内置的 re 模块来使用正则表达式。
缺点:处理数据不稳定、工作量大
2.3 XPath
Xpath(XML Path Language) 是一门在 XML 文档中查找信息的语言,可用来在 XML 文档中对元素和属性进行遍历。
在python中主要使用 lxml 库来进行xpath获取(在框架中不使用lxml,框架内直接使用xpath即可)
lxml 是 一个HTML/XML的解析器,主要的功能是如何解析和提取 HTML/XML 数据。
lxml和正则一样,也是用 C 实现的,是一款高性能的 Python HTML/XML 解析器,我们可以利用之前学习的XPath语法,来快速的定位特定元素以及节点信息。
2.4 BeautifulSoup
和 lxml 一样,Beautiful Soup 也是一个HTML/XML的解析器,主要的功能也是如何解析和提取 HTML/XML 数据。
使用BeautifulSoup需要导入bs4库
缺点:相对正则和xpath处理速度慢
优点:使用简单
2.5 Json
JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,它使得人们很容易的进行阅读和编写。同时也方便了机器进行解析和生成。适用于进行数据交互的场景,比如网站前台与后台之间的数据交互。
在python中主要使用 json 模块来处理 json数据。Json解析网站:
https://www.sojson.com/simple_json.html
2.6 threading
使用threading模块创建线程,直接从threading.Thread继承,然后重写__init__方法和run方法
三、方法实例
3.1 get方法实例
demo_get.py
3.2 post方法实例
demo_post.py
3.3 添加代理
demo_proxies.py
3.4 获取ajax类数据实例
demo_ajax.py
3.5 使用多线程实例
demo_thread.py
四、爬虫框架
4.1 Srcapy框架
-
Scrapy是用纯Python实现一个为了爬取网站数据、提取结构性数据而编写的应用框架,用途非常广泛。
-
Scrapy 使用了 Twisted
['twɪstɪd]
(其主要对手是Tornado)异步网络框架来处理网络通讯,可以加快我们的下载速度,不用自己去实现异步框架,并且包含了各种中间件接口,可以灵活的完成各种需求。
4.2 Scrapy架构图
4.3 Scrapy主要组件
-
Scrapy Engine(引擎)
: 负责Spider
、ItemPipeline
、Downloader
、Scheduler
中间的通讯,信号、数据传递等。 -
Scheduler(调度器)
: 它负责接受引擎
发送过来的Request请求,并按照一定的方式进行整理排列,入队,当引擎
需要时,交还给引擎
。 -
Downloader(下载器)
:负责下载Scrapy Engine(引擎)
发送的所有Requests请求,并将其获取到的Responses交还给Scrapy Engine(引擎)
,由引擎
交给Spider
来处理, -
Spider(爬虫)
:它负责处理所有Responses,从中分析提取数据,获取Item字段需要的数据,并将需要跟进的URL提交给引擎
,再次进入Scheduler(调度器)
, -
Item Pipeline(管道)
:它负责处理Spider
中获取到的Item,并进行进行后期处理(详细分析、过滤、存储等)的地方. -
Downloader Middlewares(下载中间件)
:你可以当作是一个可以自定义扩展下载功能的组件。 -
Spider Middlewares(Spider中间件)
:你可以理解为是一个可以自定扩展和操作引擎
和Spider
中间通信
的功能组件(比如进入Spider
的Responses;和从Spider
出去的Requests)
4.4 Scrapy的运作流程
-
引擎
:Hi!Spider
, 你要处理哪一个网站? -
Spider
:老大要我处理xxxx.com。 -
引擎
:你把第一个需要处理的URL给我吧。 -
Spider
:给你,第一个URL是xxxxxxx.com。 -
引擎
:Hi!调度器
,我这有request请求你帮我排序入队一下。 -
调度器
:好的,正在处理你等一下。 -
引擎
:Hi!调度器
,把你处理好的request请求给我。 -
调度器
:给你,这是我处理好的request -
引擎
:Hi!下载器,你按照老大的下载中间件
的设置帮我下载一下这个request请求 -
下载器
:好的!给你,这是下载好的东西。(如果失败:sorry,这个request下载失败了。然后引擎
告诉调度器
,这个request下载失败了,你记录一下,我们待会儿再下载) -
引擎
:Hi!Spider
,这是下载好的东西,并且已经按照老大的下载中间件
处理过了,你自己处理一下(注意!这儿responses默认是交给def parse()
这个函数处理的) -
Spider
:(处理完毕数据之后对于需要跟进的URL),Hi!引擎
,我这里有两个结果,这个是我需要跟进的URL,还有这个是我获取到的Item数据。 -
引擎
:Hi !管道
我这儿有个item你帮我处理一下!调度器
!这是需要跟进URL你帮我处理下。然后从第四步开始循环,直到获取完老大需要全部信息。 -
管道``调度器
:好的,现在就做!
4.5 制作Scrapy爬虫4步曲
1 | 新建爬虫项目 | scrapy startproject mySpider |
2 | 明确目标 (编写items.py) | 打开mySpider目录下的items.py |
3 | 制作爬虫 (spiders/xxspider.py) | scrapy genspider gushi365 "gushi365.com" |
4 | 存储内容 (pipelines.py) | 设计管道存储爬取内容 |
五、常用工具
5.1 fidder
fidder是一款抓包工具,主要用于手机抓包。
5.2 XPath Helper
xpath helper插件是一款免费的chrome爬虫网页解析工具。可以帮助用户解决在获取xpath路径时无法正常定位等问题。
谷歌浏览器插件xpath helper 的安装和使用:
https://jingyan.baidu.com/article/1e5468f94694ac484861b77d.html
六、分布式爬虫
6.1 scrapy-redis
Scrapy-redis是为了更方便地实现Scrapy分布式爬取,而提供了一些以redis为基础的组件(pip install scrapy-redis)
github网站:https://github.com/rolando/scrapy-redis
6.2 分布式策略
-
Master端
(核心服务器) :搭建一个Redis数据库,不负责爬取,只负责url指纹判重、Request的分配,以及数据的存储 -
Slaver端
(爬虫程序执行端) :负责执行爬虫程序,运行过程中提交新的Request给Master
来自:干货 | 十分钟带你从入门到进阶python爬虫十分钟带你了解python爬虫从入门到进阶。本文从爬虫基本概念到常用模块,从方法实例到常用工具,从爬虫框架到分布式爬虫都进行了引导式阐述与参透。https://mp.weixin.qq.com/s/mPZLjHSewZlCEn4EJgaCEA
这篇关于python爬虫基础知识的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-03用FastAPI掌握Python异步IO:轻松实现高并发网络请求处理
- 2025-01-02封装学习:Python面向对象编程基础教程
- 2024-12-28Python编程基础教程
- 2024-12-27Python编程入门指南
- 2024-12-27Python编程基础
- 2024-12-27Python编程基础教程
- 2024-12-27Python编程基础指南
- 2024-12-24Python编程入门指南
- 2024-12-24Python编程基础入门
- 2024-12-24Python编程基础:变量与数据类型