用python实现线性规划
2022/1/16 22:33:26
本文主要是介绍用python实现线性规划,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
用Python实现线性规划
使用python库中scipy中的函数linprog来求解线性规划
linprog函数中线性规划的标准形式为
\[\min c^Tx\\ s.t\left\{\begin{aligned}Auq\cdot x&\le b\\ Aeq\cdot x&=beq\\ lb\le x&\le ub\end{aligned}\right. \]其中c和x为n维向量,A、Aeq为适当维度的矩阵,b、beq为适当维度的列向量。(Aeq对应约束条件中的等式约束得系数矩阵,A为不等式约束的系数矩阵。
scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simplex', callback=None, options=None)
求解最大化问题
\[\max 2x_1+3x_2-5x_3\\ s.t\left\{\begin{aligned}x_1+x_2+x_3&=7\\ 2x_1-5x_2+x_3&\ge10\\ x_1+3x_2+x_3&\le12\\ x_1, x_2,x_3 &\ge0 \end{aligned}\right. \]将问题转换为标准形式
\[\min-2x_1-3x_2+5x_3\\ s.t\left\{\begin{aligned} x_1+x_2+x_3&=7\\ -2x_1+5x_2-x_3&\le-10\\ x_1+3x_2+x_3&\le12\\ x_1,x_2,x_3&\ge0 \end{aligned}\right. \\ c=\begin{pmatrix}-2&-3&5\end{pmatrix}\\ A_{uq}=\begin{pmatrix}-2&5&-1\\1&3&1\end{pmatrix}\\ b_{uq}=\begin{pmatrix}-10&12\end{pmatrix}\\ A_{eq}=\begin{pmatrix} 1&1&1 \end{pmatrix}\\ b_{eq}=\begin{pmatrix}7\end{pmatrix} \]代码
from scipy import optimize as op import numpy as np c = np.array([-2, -3, 5]) A_ub = np.array([[-2, 5, -1], [1, 3, 1]]) b_ub = np.array([-10, 12]) A_eq = np.array([[1, 1, 1]]) b_eq = np.array([7]) x1 = [0, np.inf] x2 = [0, np.inf] x3 = [0, np.inf] res = op.linprog(c, A_ub, b_ub, A_eq, b_eq, bounds=(x1, x2, x3)) # bounds为每个为每个未知量的范围 print(res)
运行结果:
con: array([1.80712245e-09])
fun: -14.571428565645084
message: 'Optimization terminated successfully.'
nit: 5
slack: array([-2.24599006e-10, 3.85714286e+00])
status: 0
success: True
x: array([6.42857143e+00, 5.71428571e-01, 2.35900788e-10])
所求最小值为-14.571428565645084,故得所求最大值为14.571428565645084
这篇关于用python实现线性规划的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-03用FastAPI掌握Python异步IO:轻松实现高并发网络请求处理
- 2025-01-02封装学习:Python面向对象编程基础教程
- 2024-12-28Python编程基础教程
- 2024-12-27Python编程入门指南
- 2024-12-27Python编程基础
- 2024-12-27Python编程基础教程
- 2024-12-27Python编程基础指南
- 2024-12-24Python编程入门指南
- 2024-12-24Python编程基础入门
- 2024-12-24Python编程基础:变量与数据类型