DB2监控之分析CPU高
2022/1/23 2:06:33
本文主要是介绍DB2监控之分析CPU高,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
DB2服务器CPU使用率高,可以通过以下方式去分析。DB2 V9.5版本以前是多进程,想看哪个进程占用CPU和内存高分别使用ps aux --sort=-%cpu和ps aux --sort=-rss,V9.5版本以后是单进程多线程。
查看db2sysc进程的PID
[db2inst1]# ps -ef | grep db2sysc
查看db2sysc多线程
AIX:ps -emo THREAD -p <PID> Linux:ps -lLfp <PID>
看下DB2 V9.5版本之前与之后多进程与多线程的区别(以主进程db2sysc为例)
DB2 V9.1:
[inst91]# ps -ef | grep db2sysc inst91 21741 21740 0 12:48 pts/1 00:00:00 db2sysc 0 [inst91]# ps -lLfp 21741 F S UID PID PPID LWP C NLWP PRI NI ADDR SZ WCHAN STIME TTY TIME CMD 4 S inst91 21741 21740 21741 0 1 78 0 - 85875 msgrcv 12:48 pts/1 00:00:00 db2sysc 0
DB2 V10.5:
[inst105]# ps -ef | grep db2sysc inst105 5797 5795 0 Jan21 ? 00:01:02 db2sysc 0 [inst105]# ps -lLfp 5797 F S UID PID PPID LWP C NLWP PRI NI ADDR SZ WCHAN STIME TTY TIME CMD 4 S inst105 5797 5795 5797 0 11 80 0 - 276364 184466 Jan21 ? 00:00:00 db2sysc 0 1 S inst105 5797 5795 5798 0 11 78 0 - 276364 msgrcv Jan21 ? 00:00:11 db2sysc 0 1 S inst105 5797 5795 5799 0 11 75 0 - 276364 - Jan21 ? 00:00:08 db2sysc 0 1 S inst105 5797 5795 5800 0 11 75 0 - 276364 semtim Jan21 ? 00:00:00 db2sysc 0 1 S inst105 5797 5795 5801 0 11 78 0 - 276364 - Jan21 ? 00:00:00 db2sysc 0 1 S inst105 5797 5795 5802 0 11 58 - - 276364 - Jan21 ? 00:00:00 db2sysc 0 1 S inst105 5797 5795 5806 0 11 58 - - 276364 - Jan21 ? 00:00:00 db2sysc 0 1 S inst105 5797 5795 5808 0 11 75 0 - 276364 msgrcv Jan21 ? 00:00:00 db2sysc 0 1 S inst105 5797 5795 5809 0 11 78 0 - 276364 - Jan21 ? 00:00:13 db2sysc 0 1 S inst105 5797 5795 27824 0 11 75 0 - 276364 - Jan21 ? 00:00:00 db2sysc 0 1 S inst105 5797 5795 25718 0 11 75 0 - 276364 semtim Jan21 ? 00:00:01 db2sysc 0
以DB2 V10.5为例,V9.5之后db2pd才有edu参数,查看EDU(默认以CPU排序)
[inst105]# db2pd -edu Database Member 0 -- Active -- Up 1 days 16:47:30 -- Date 2022-01-22-13.42.39.849120 List of all EDUs for database member 0 db2sysc PID: 5797 db2wdog PID: 5795 db2acd PID: 5811 EDU ID TID Kernel TID EDU Name USR (s) SYS (s) ======================================================================================================================================== 234 47175950133568 25718 db2agent (idle) 0 0.470000 1.230000 170 47175883024704 27824 db2agent (idle) 0 0.130000 0.300000 17 47175992076608 5809 db2resync 0 0.430000 13.140000 16 47175996270912 5808 db2ipccm 0 0.040000 0.440000 15 47176000465216 5806 db2wlmtm 0 0.340000 0.160000 14 47176004659520 5802 db2wlmt 0 0.170000 0.050000 13 47176008853824 5801 db2licc 0 0.000000 0.000000 12 47176013048128 5800 db2thcln 0 0.000000 0.020000 11 47176017242432 5799 db2alarm 0 2.310000 6.240000 1 47175757195584 5798 db2sysc 0 2.420000 8.950000
根据EDUID找出对应的ApplHandl ID
[inst105]# db2pd -d dbname -app
查看对应ApplHand ID的快照信息
db2 get snapshot for application agentid <applHandl ID>
根据实际情况是否force掉正在执行的事务
db2 "force application(agentid)"
查看消耗CPU高的SQL
ORDER BY USER CPU
select NUM_EXECUTIONS, TOTAL_USR_CPU_TIME, dec(double(TOTAL_USR_CPU_TIME)/double(case when NUM_EXECUTIONS=0 then 1 else NUM_EXECUTIONS end),20,2) as AVG_USR_CPU_TIME, TOTAL_USR_CPU_TIME_MS, dec(double(TOTAL_USR_CPU_TIME_MS)/double(case when NUM_EXECUTIONS=0 then 1 else NUM_EXECUTIONS end),20,2) as AVG_USR_CPU_TIME_MS, TOTAL_SYS_CPU_TIME, TOTAL_SYS_CPU_TIME_MS, TOTAL_EXEC_TIME, TOTAL_EXEC_TIME_MS, ROWS_READ, ROWS_WRITTEN, STMT_SORTS, SORT_OVERFLOWS, TOTAL_SORT_TIME, STMT_TEXT from SYSIBMADM.SNAPDYN_SQL order by TOTAL_USR_CPU_TIME desc,TOTAL_USR_CPU_TIME_MS desc fetch first 30 rows only with ur
ORDER BY SYS USER
select NUM_EXECUTIONS, TOTAL_USR_CPU_TIME, TOTAL_USR_CPU_TIME_MS, TOTAL_SYS_CPU_TIME, TOTAL_SYS_CPU_TIME_MS, TOTAL_EXEC_TIME, TOTAL_EXEC_TIME_MS, ROWS_READ, ROWS_WRITTEN, STMT_SORTS, SORT_OVERFLOWS, TOTAL_SORT_TIME, STMT_TEXT from SYSIBMADM.SNAPDYN_SQL order by TOTAL_SYS_CPU_TIME desc,TOTAL_SYS_CPU_TIME_MS desc fetch first 30 rows only with ur
这篇关于DB2监控之分析CPU高的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-03用LangChain构建会检索和搜索的智能聊天机器人指南
- 2025-01-03图像文字理解,OCR、大模型还是多模态模型?PalliGema2在QLoRA技术上的微调与应用
- 2025-01-03混合搜索:用LanceDB实现语义和关键词结合的搜索技术(应用于实际项目)
- 2025-01-03停止思考数据管道,开始构建数据平台:介绍Analytics Engineering Framework
- 2025-01-03如果 Azure-Samples/aks-store-demo 使用了 Score 会怎样?
- 2025-01-03Apache Flink概述:实时数据处理的利器
- 2025-01-01使用 SVN合并操作时,怎么解决冲突的情况?-icode9专业技术文章分享
- 2025-01-01告别Anaconda?试试这些替代品吧
- 2024-12-31自学记录鸿蒙API 13:实现人脸比对Core Vision Face Comparator
- 2024-12-31自学记录鸿蒙 API 13:骨骼点检测应用Core Vision Skeleton Detection