python numpy的一些基本使用
2022/1/24 17:04:15
本文主要是介绍python numpy的一些基本使用,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
import numpy as np '''the 1st part: the build of array''' array1_1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) '''[[1 2 3] [4 5 6] [7 8 9]] ''' array1_2 = np.zeros([3, 3]) '''[[0. 0. 0.] [0. 0. 0.] [0. 0. 0.]] ''' array1_3 = np.ones([3, 3]) '''[[1. 1. 1.] [1. 1. 1.] [1. 1. 1.]] ''' array1_4 = np.empty([3, 3]) '''[[0.000e+000 0.000e+000 0.000e+000] [0.000e+000 0.000e+000 3.617e-321] [0.000e+000 0.000e+000 0.000e+000]] it is random ''' array1_5 = np.full([3, 3], 6) '''[[6 6 6] [6 6 6] [6 6 6]] ''' array1_6 = np.eye(3) '''[[1. 0. 0.] [0. 1. 0.] [0. 0. 1.]] ''' array1_7 = np.arange(10, 20, 2) '''[10 12 14 16 18]''' array1_8 = np.linspace(10, 20, 5) '''[10. 12.5 15. 17.5 20. ]''' array1_9 = np.logspace(10, 20, 5) '''[1.00000000e+10 3.16227766e+12 1.00000000e+15 3.16227766e+17 1.00000000e+20] ''' array1_10 = np.diag([3, 4, 5]) '''[[3 0 0] [0 4 0] [0 0 5]] ''' array1_11 = np.tri(3) '''[[1. 0. 0.] [1. 1. 0.] [1. 1. 1.]] ''' array1_12 = np.vander([1, 2, 3]) '''[[1 1 1] [4 2 1] [9 3 1]] ''' '''the 2nd part: the property of array''' array2_1 = np.vander([1, 2, 3]) ''' [[1 1 1] [4 2 1] [9 3 1]] ''' s1 = array2_1.shape '''(3, 3)''' s2 = array2_1.size '''9''' s3 = array2_1.T ''' [[1 4 9] [1 2 3] [1 1 1]] ''' s4 = array2_1.real '''[[1 1 1] [4 2 1] [9 3 1]] the real part of array ''' s5 = array2_1.imag '''[[0 0 0] [0 0 0] [0 0 0]] the imaginary part of array ''' '''the 3rd part:the operation of array''' '''array.copy''' array3_1 = np.vander([1, 2, 3]) cc = array3_1 #cc[0, 0] = 0 ''' array3_1: [[0 1 1] [4 2 1] [9 3 1]] cc: [[0 1 1] [4 2 1] [9 3 1]] It means that the content of the original array will be changed with the change in cc while you use "=". We can use another method if you won't want to change the original array ''' cc1 = array3_1.copy() cc1[0, 0] = 0 ''' array: [[1 1 1] [4 2 1] [9 3 1]] cc1: [[0 1 1] [4 2 1] [9 3 1]]''' cc2 = array3_1.reshape(1, 9) '''array: [[1 1 1] [4 2 1] [9 3 1]] cc2: [[0 1 1 4 2 1 9 3 1]]''' cc2.resize(3, 3) ''' [[1 1 1] [4 2 1] [9 3 1]]''' d_1 = cc.flatten() ''' [1 1 1 4 2 1 9 3 1]''' d_2 = cc2.max() '''9''' '''the fourth part: indexes of array''' f_1 = array3_1[1:3, 1:3] ''' [[2 1] [3 1]] ''' f_2 = array3_1[1:3, 1:3][0, 0] '''2''' f_3 = array3_1[[1, 2], [0, 1]] ''' [4 3] [1,2] is the row [0,1] is the list So (1,0) is 4 and (2,1) is 3 ''' f_4 = array3_1[np.ix_([1, 2], [0, 1])] ''' [[4 2] [9 3]] ''' for i in array3_1: print(i) ''' [1 1 1] [4 2 1] [9 3 1] ''' for i in np.nditer(array3_1): print(i) ''' 1 1 1 4 2 1 9 3 1 ''' '''the fifth part: the separation and combination''' array4_1 = np.vander([1, 2, 3]) array4_2 = np.eye(3) gg_1 = np.vstack([array4_1, array4_2]) ''' [[1. 1. 1.] [4. 2. 1.] [9. 3. 1.] [1. 0. 0.] [0. 1. 0.] [0. 0. 1.]] ''' gg_2 = np.hstack([array4_1, array4_2]) ''' [[1. 1. 1. 1. 0. 0.] [4. 2. 1. 0. 1. 0.] [9. 3. 1. 0. 0. 1.]] ''' gg_3 = np.stack([array4_1, array4_2]) ''' [[[1. 1. 1.] [4. 2. 1.] [9. 3. 1.]] [[1. 0. 0.] [0. 1. 0.] [0. 0. 1.]]] ''' array4_3 = np.vander([1, 2, 3, 4]) np.vsplit(array4_3, 2) np.hsplit(array4_3, 2) np.split(array4_3, 2) print(array4_3)
这篇关于python numpy的一些基本使用的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-03用FastAPI掌握Python异步IO:轻松实现高并发网络请求处理
- 2025-01-02封装学习:Python面向对象编程基础教程
- 2024-12-28Python编程基础教程
- 2024-12-27Python编程入门指南
- 2024-12-27Python编程基础
- 2024-12-27Python编程基础教程
- 2024-12-27Python编程基础指南
- 2024-12-24Python编程入门指南
- 2024-12-24Python编程基础入门
- 2024-12-24Python编程基础:变量与数据类型