python pyecharts 数据可视化展示
2022/1/25 20:06:50
本文主要是介绍python pyecharts 数据可视化展示,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
from pyecharts import options as opts from snapshot_selenium import snapshot as driver def draw_chart(self, file, save_path): """ 前端回放性能用例数据统计图 file: excel完整路径 save_path: html 和 png 保存目录 """ data = pandas.read_excel(file, engine='openpyxl') shape = data.shape nrows = shape[0] ncols = shape[1] # print(f'当前总计行数:' + str(nrows)) # 获取行数 # print(f'当前总计列数:' + str(ncols)) # 获取列数 dt_dates = [] # 日期 dt_avg_fpss = [] # 平均帧率 dt_fat_fps_nums = [] # 肥胖帧个数 for i in range(nrows): dt_date = data.iloc[i, 0] dt_dates.append(dt_date) dt_avg_fps = data.iloc[i, 1] dt_avg_fpss.append(float(dt_avg_fps)) dt_fat_fps_num = data.iloc[i, 2] dt_fat_fps_nums.append(float(dt_fat_fps_num)) # print(dt_fat_fps_nums) line = ( Line(init_opts=opts.InitOpts(width='1850px', height='640px')) .add_xaxis(dt_dates) .add_yaxis("平均帧率", dt_avg_fpss) .add_yaxis("肥胖帧个数", dt_fat_fps_nums) .set_global_opts(title_opts=opts.TitleOpts(title="前端性能测试情况")) ) line.set_series_opts( markpoint_opts=opts.MarkPointOpts( data=[ opts.MarkPointItem(type_='average', name='平均值'), opts.MarkPointItem(type_='max', name='最大值'), opts.MarkPointItem(type_='min', name='最小值') ] ) ) # 设置标题等 line.set_global_opts(title_opts=opts.TitleOpts('前端性能跟踪变化曲线'), # 显示工具箱 toolbox_opts=opts.ToolboxOpts(), xaxis_opts=opts.AxisOpts(axislabel_opts={"rotate": 45, "interval": 0}) ) file_name = self.getTestCaseName(file) html_name = file_name + ".html" html_save_path = save_path + "\\" + html_name line.render(html_save_path) snapshot_save_path = save_path + "\\bar.png" # 需要安装 snapshot-selenium 或者 snapshot-phantomjs make_snapshot(driver, line.render(), snapshot_save_path) # webbrowser.open(html_name)
这篇关于python pyecharts 数据可视化展示的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-25Python编程基础:变量与类型
- 2024-11-25Python编程基础与实践
- 2024-11-24Python编程基础详解
- 2024-11-21Python编程基础教程
- 2024-11-20Python编程基础与实践
- 2024-11-20Python编程基础与高级应用
- 2024-11-19Python 基础编程教程
- 2024-11-19Python基础入门教程
- 2024-11-17在FastAPI项目中添加一个生产级别的数据库——本地环境搭建指南
- 2024-11-16`PyMuPDF4LLM`:提取PDF数据的神器