chapter3——逻辑回归手动+sklean版本
2022/2/4 6:14:00
本文主要是介绍chapter3——逻辑回归手动+sklean版本,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
1 导入numpy包
import numpy as np
2 sigmoid函数
def sigmoid(x): return 1/(1+np.exp(-x)) demox = np.array([1,2,3]) print(sigmoid(demox)) #报错 #demox = [1,2,3] # print(sigmoid(demox))
结果:
[0.73105858 0.88079708 0.95257413]
3 定义逻辑回归模型主体
### 定义逻辑回归模型主体 def logistic(x, y, w, b): # 训练样本量 num_train = x.shape[0] # 逻辑回归模型输出 y_hat = sigmoid(np.dot(x,w)+b) # 交叉熵损失 cost = -1/(num_train)*(np.sum(y*np.log(y_hat)+(1-y)*np.log(1-y_hat))) # 权值梯度 dW = np.dot(x.T,(y_hat-y))/num_train # 偏置梯度 db = np.sum(y_hat- y)/num_train # 压缩损失数组维度 cost = np.squeeze(cost) return y_hat, cost, dW, db
4 初始化函数
def init_parm(dims): w = np.zeros((dims,1)) b = 0 return w ,b
5 定义逻辑回归模型训练过程
### 定义逻辑回归模型训练过程 def logistic_train(X, y, learning_rate, epochs): # 初始化模型参数 W, b = init_parm(X.shape[1]) cost_list = [] for i in range(epochs): # 计算当前次的模型计算结果、损失和参数梯度 a, cost, dW, db = logistic(X, y, W, b) # 参数更新 W = W -learning_rate * dW b = b -learning_rate * db if i % 100 == 0: cost_list.append(cost) if i % 100 == 0: print('epoch %d cost %f' % (i, cost)) params = { 'W': W, 'b': b } grads = { 'dW': dW, 'db': db } return cost_list, params, grads
6 定义预测函数
def predict(X,params): y_pred = sigmoid(np.dot(X,params['W'])+params['b']) y_preds = [1 if y_pred[i]>0.5 else 0 for i in range(len(y_pred))] return y_preds
7 生成数据
# 导入matplotlib绘图库 import matplotlib.pyplot as plt # 导入生成分类数据函数 from sklearn.datasets import make_classification # 生成100*2的模拟二分类数据集 x ,label = make_classification( n_samples=100,# 样本个数 n_classes=2,# 样本类别 n_features=2,#特征个数 n_redundant=0,#冗余特征个数(有效特征的随机组合) n_informative=2,#有效特征,有价值特征 n_repeated=0, # 重复特征个数(有效特征和冗余特征的随机组合) n_clusters_per_class=2 ,# 簇的个数 random_state=1, ) print("x.shape =",x.shape) print("label.shape = ",label.shape) print("np.unique(label) =",np.unique(label)) print(set(label)) # 设置随机数种子 rng = np.random.RandomState(2) # 对生成的特征数据添加一组均匀分布噪声https://blog.csdn.net/vicdd/article/details/52667709 x += 2*rng.uniform(size=x.shape) # 标签类别数 unique_label = set(label) # 根据标签类别数设置颜色 print(np.linspace(0,1,len(unique_label))) colors = plt.cm.Spectral(np.linspace(0,1,len(unique_label))) print(colors) # 绘制模拟数据的散点图 for k,col in zip(unique_label , colors): x_k=x[label==k] plt.plot(x_k[:,0],x_k[:,1],'o',markerfacecolor=col,markeredgecolor="k", markersize=14) plt.title('Simulated binary data set') plt.show();
结果:
x.shape = (100, 2) label.shape = (100,) np.unique(label) = [0 1] {0, 1} [0. 1.] [[0.61960784 0.00392157 0.25882353 1. ] [0.36862745 0.30980392 0.63529412 1. ]]
复习
# 复习 mylabel = label.reshape((-1,1)) data = np.concatenate((x,mylabel),axis=1) print(data.shape)
结果:
(100, 3)
8 划分数据集
offset = int(x.shape[0]*0.7) x_train, y_train = x[:offset],label[:offset].reshape((-1,1)) x_test, y_test = x[offset:],label[offset:].reshape((-1,1)) print(x_train.shape) print(y_train.shape) print(x_test.shape) print(y_test.shape)
结果:
(70, 2) (70, 1) (30, 2) (30, 1)
9 训练
cost_list, params, grads = logistic_train(x_train, y_train, 0.01, 1000) print(params['b'])
结果:
epoch 0 cost 0.693147 epoch 100 cost 0.568743 epoch 200 cost 0.496925 epoch 300 cost 0.449932 epoch 400 cost 0.416618 epoch 500 cost 0.391660 epoch 600 cost 0.372186 epoch 700 cost 0.356509 epoch 800 cost 0.343574 epoch 900 cost 0.332689 -0.6646648941379839
10 准确率计算
from sklearn.metrics import accuracy_score,classification_report y_pred = predict(x_test,params) print("y_pred = ",y_pred) print(y_pred) print(y_test.shape) print(accuracy_score(y_pred,y_test)) #不需要都是1维的,貌似会自动squeeze() print(classification_report(y_test,y_pred))
结果:
y_pred = [0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0] [0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0] (30, 1) 0.9333333333333333 precision recall f1-score support 0 0.92 0.92 0.92 12 1 0.94 0.94 0.94 18 accuracy 0.93 30 macro avg 0.93 0.93 0.93 30 weighted avg 0.93 0.93 0.93 30
11 绘制逻辑回归决策边界
### 绘制逻辑回归决策边界 def plot_logistic(X_train, y_train, params): # 训练样本量 n = X_train.shape[0] xcord1,ycord1,xcord2,ycord2 = [],[],[],[] # 获取两类坐标点并存入列表 for i in range(n): if y_train[i] == 1: xcord1.append(X_train[i][0]) ycord1.append(X_train[i][1]) else: xcord2.append(X_train[i][0]) ycord2.append(X_train[i][1]) fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(xcord1,ycord1,s = 30,c = 'red') ax.scatter(xcord2,ycord2,s = 30,c = 'green') # 取值范围 x =np.arange(-1.5,3,0.1) # 决策边界公式 y = (-params['b'] - params['W'][0] * x) / params['W'][1] # 绘图 ax.plot(x, y) plt.xlabel('X1') plt.ylabel('X2') plt.show() plot_logistic(x_train, y_train, params)
结果:
11 sklearn实现
from sklearn.linear_model import LogisticRegression clf = LogisticRegression(random_state=0).fit(x_train,y_train) y_pred = clf.predict(x_test) print(y_pred) accuracy_score(y_test,y_pred)
结果:
[0 0 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 0] 0.9333333333333333
这篇关于chapter3——逻辑回归手动+sklean版本的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-26怎么使用nsenter命令进入容器?-icode9专业技术文章分享
- 2024-12-26导入文件提示存在乱码,请确定使用的是UTF-8编码怎么解决?-icode9专业技术文章分享
- 2024-12-26csv文件怎么设置编码?-icode9专业技术文章分享
- 2024-12-25TypeScript基础知识详解
- 2024-12-25安卓NDK 是什么?-icode9专业技术文章分享
- 2024-12-25caddy 可以定义日志到 文件吗?-icode9专业技术文章分享
- 2024-12-25wordfence如何设置密码规则?-icode9专业技术文章分享
- 2024-12-25有哪些方法可以实现 DLL 文件路径的管理?-icode9专业技术文章分享
- 2024-12-25错误信息 "At least one element in the source array could not be cast down to the destination array-icode9专业技术文章分享
- 2024-12-25'flutter' 不是内部或外部命令,也不是可运行的程序 或批处理文件。错误信息提示什么意思?-icode9专业技术文章分享