神经网络--卷积层
2022/2/7 23:13:48
本文主要是介绍神经网络--卷积层,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
import torch import torchvision.datasets from torch import nn from torch.nn import Conv2d from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter dataset = torchvision.datasets.CIFAR10("./DXAA",train=False,transform=torchvision.transforms.ToTensor(),download=True)#路径为返回上一层路径,建立DATA文件夹 # 注意这里的dataset 需要将其转成tensor的类型,否则下面的卷积操作将无法进行 dataloader = DataLoader(dataset,batch_size=64) class sza_(nn.Module):#继承神经网络的模型Module def __init__(self): super(sza_, self).__init__() self.conv1 = Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)#彩色图片为3,黑白图片为1,kernel_size 为数字,那么卷积核为3*3 #现在我们的网络当中有一个卷积层叫做conv1 def forward(self,x): x = self.conv1(x)#这里的输入值为为tensor类型。 return x sza__ = sza_()#实例化、 # sza_( # (conv1): Conv2d(3, 6, kernel_size=(3, 3), stride=(1, 1)) # ) writer = SummaryWriter("./logs") step = 0 for data in dataloader: imgs,targets = data output = sza__(imgs) # print(imgs.shape) # print(output.shape) # torch.Size([64, 3, 32, 32])意思为imgs 的batchsize为64一组 ,in_channels =3, 大小是32*32的 # torch.Size([64, 6, 30, 30])经过一轮卷积之后 output的batchsize仍然为64一组,但是out_channels 输出为6, 大小缩水为30*30 writer.add_images("卷积操作before",imgs,step) output = torch.reshape(output,(-1,3,30,30))#torch.size(64,6,30,30)--->(xxx,3,30,30) # print(output.shape)#reshape结果:torch.Size([128, 3, 30, 30]) writer.add_images("卷积操作after",output,step)# writer.add_images("卷积操作after",output,step)这里显示报错原因在于写入的图片out_channels为6,而彩色图片的channels为3 step = step + 1 writer.close()
效果如下:
这篇关于神经网络--卷积层的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-23Springboot应用的多环境打包入门
- 2024-11-23Springboot应用的生产发布入门教程
- 2024-11-23Python编程入门指南
- 2024-11-23Java创业入门:从零开始的编程之旅
- 2024-11-23Java创业入门:新手必读的Java编程与创业指南
- 2024-11-23Java对接阿里云智能语音服务入门详解
- 2024-11-23Java对接阿里云智能语音服务入门教程
- 2024-11-23JAVA对接阿里云智能语音服务入门教程
- 2024-11-23Java副业入门:初学者的简单教程
- 2024-11-23JAVA副业入门:初学者的实战指南