大数据hive相关知识学习记录-Hive基本SQL操作-丁力士-4
2022/2/10 19:23:55
本文主要是介绍大数据hive相关知识学习记录-Hive基本SQL操作-丁力士-4,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
Hive基本SQL操作
Hive DDL(数据库定义语言)
1、数据库的基本操作
--展示所有数据库 show databases; --切换数据库 use database_name; /*创建数据库 CREATE (DATABASE|SCHEMA) [IF NOT EXISTS] database_name [COMMENT database_comment] [LOCATION hdfs_path] [WITH DBPROPERTIES (property_name=property_value, ...)]; */ create database test; /* 删除数据库 DROP (DATABASE|SCHEMA) [IF EXISTS] database_name [RESTRICT|CASCADE]; */ drop database database_name;
注意:当进入hive的命令行开始编写SQL语句的时候,如果没有任何相关的数据库操作,那么默认情况下,所有的表存在于default数据库,在hdfs上的展示形式是将此数据库的表保存在hive的默认路径下,如果创建了数据库,那么会在hive的默认路径下生成一个database_name.db的文件夹,此数据库的所有表会保存在database_name.db的目录下。
2、数据库表的基本操作
/* 创建表的操作 基本语法: CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name -- (Note: TEMPORARY available in Hive 0.14.0 and later) [(col_name data_type [COMMENT col_comment], ... [constraint_specification])] [COMMENT table_comment] [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)] [CLUSTERED BY (col_name, col_name, ...) [SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS] [SKEWED BY (col_name, col_name, ...) -- (Note: Available in Hive 0.10.0 and later)] ON ((col_value, col_value, ...), (col_value, col_value, ...), ...) [STORED AS DIRECTORIES] [ [ROW FORMAT row_format] [STORED AS file_format] | STORED BY 'storage.handler.class.name' [WITH SERDEPROPERTIES (...)] -- (Note: Available in Hive 0.6.0 and later) ] [LOCATION hdfs_path] [TBLPROPERTIES (property_name=property_value, ...)] -- (Note: Available in Hive 0.6.0 and later) [AS select_statement]; -- (Note: Available in Hive 0.5.0 and later; not supported for external tables) CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name LIKE existing_table_or_view_name [LOCATION hdfs_path]; 复杂数据类型 data_type : primitive_type | array_type | map_type | struct_type | union_type -- (Note: Available in Hive 0.7.0 and later) 基本数据类型 primitive_type : TINYINT | SMALLINT | INT | BIGINT | BOOLEAN | FLOAT | DOUBLE | DOUBLE PRECISION -- (Note: Available in Hive 2.2.0 and later) | STRING | BINARY -- (Note: Available in Hive 0.8.0 and later) | TIMESTAMP -- (Note: Available in Hive 0.8.0 and later) | DECIMAL -- (Note: Available in Hive 0.11.0 and later) | DECIMAL(precision, scale) -- (Note: Available in Hive 0.13.0 and later) | DATE -- (Note: Available in Hive 0.12.0 and later) | VARCHAR -- (Note: Available in Hive 0.12.0 and later) | CHAR -- (Note: Available in Hive 0.13.0 and later) array_type : ARRAY < data_type > map_type : MAP < primitive_type, data_type > struct_type : STRUCT < col_name : data_type [COMMENT col_comment], ...> union_type : UNIONTYPE < data_type, data_type, ... > -- (Note: Available in Hive 0.7.0 and later) 行格式规范 row_format : DELIMITED [FIELDS TERMINATED BY char [ESCAPED BY char]] [COLLECTION ITEMS TERMINATED BY char] [MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char] [NULL DEFINED AS char] -- (Note: Available in Hive 0.13 and later) | SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, property_name=property_value, ...)] 文件基本类型 file_format: : SEQUENCEFILE | TEXTFILE -- (Default, depending on hive.default.fileformat configuration) | RCFILE -- (Note: Available in Hive 0.6.0 and later) | ORC -- (Note: Available in Hive 0.11.0 and later) | PARQUET -- (Note: Available in Hive 0.13.0 and later) | AVRO -- (Note: Available in Hive 0.14.0 and later) | JSONFILE -- (Note: Available in Hive 4.0.0 and later) | INPUTFORMAT input_format_classname OUTPUTFORMAT output_format_classname 表约束 constraint_specification: : [, PRIMARY KEY (col_name, ...) DISABLE NOVALIDATE ] [, CONSTRAINT constraint_name FOREIGN KEY (col_name, ...) REFERENCES table_name(col_name, ...) DISABLE NOVALIDATE */ --创建普通hive表(不包含行定义格式) create table psn ( id int, name string, likes array<string>, address map<string,string> ) --创建自定义行格式的hive表 create table psn2 ( id int, name string, likes array<string>, address map<string,string> ) row format delimited fields terminated by ',' collection items terminated by '-' map keys terminated by ':'; --创建默认分隔符的hive表(^A、^B、^C) create table psn3 ( id int, name string, likes array<string>, address map<string,string> ) row format delimited fields terminated by '\001' collection items terminated by '\002' map keys terminated by '\003'; --或者 create table psn3 ( id int, name string, likes array<string>, address map<string,string> ) --创建hive的外部表(需要添加external和location的关键字) create external table psn4 ( id int, name string, likes array<string>, address map<string,string> ) row format delimited fields terminated by ',' collection items terminated by '-' map keys terminated by ':' location '/data'; /* 在之前创建的表都属于hive的内部表(psn,psn2,psn3),而psn4属于hive的外部表, 内部表跟外部表的区别: 1、hive内部表创建的时候数据存储在hive的默认存储目录中,外部表在创建的时候需要制定额外的目录 2、hive内部表删除的时候,会将元数据和数据都删除,而外部表只会删除元数据,不会删除数据 应用场景: 内部表:需要先创建表,然后向表中添加数据,适合做中间表的存储 外部表:可以先创建表,再添加数据,也可以先有数据,再创建表,本质上是将hdfs的某一个目录的数据跟 hive的表关联映射起来,因此适合原始数据的存储,不会因为误操作将数据给删除掉 */ /* hive的分区表: hive默认将表的数据保存在某一个hdfs的存储目录下,当需要检索符合条件的某一部分数据的时候,需要全量 遍历数据,io量比较大,效率比较低,因此可以采用分而治之的思想,将符合某些条件的数据放置在某一个目录 ,此时检索的时候只需要搜索指定目录即可,不需要全量遍历数据。 */ --创建单分区表 create table psn5 ( id int, name string, likes array<string>, address map<string,string> ) partitioned by(gender string) row format delimited fields terminated by ',' collection items terminated by '-' map keys terminated by ':'; --创建多分区表 create table psn6 ( id int, name string, likes array<string>, address map<string,string> ) partitioned by(gender string,age int) row format delimited fields terminated by ',' collection items terminated by '-' map keys terminated by ':'; /* 注意: 1、当创建完分区表之后,在保存数据的时候,会在hdfs目录中看到分区列会成为一个目录,以多级目录的形式 存在 2、当创建多分区表之后,插入数据的时候不可以只添加一个分区列,需要将所有的分区列都添加值 3、多分区表在添加分区列的值得时候,与顺序无关,与分区表的分区列的名称相关,按照名称就行匹配 */ --给分区表添加分区列的值 alter table table_name add partition(col_name=col_value) --删除分区列的值 alter table table_name drop partition(col_name=col_value) /* 注意: 1、添加分区列的值的时候,如果定义的是多分区表,那么必须给所有的分区列都赋值 2、删除分区列的值的时候,无论是单分区表还是多分区表,都可以将指定的分区进行删除 */ /* 修复分区: 在使用hive外部表的时候,可以先将数据上传到hdfs的某一个目录中,然后再创建外部表建立映射关系,如果在上传数据的时候,参考分区表的形式也创建了多级目录,那么此时创建完表之后,是查询不到数据的,原因是分区的元数据没有保存在mysql中,因此需要修复分区,将元数据同步更新到mysql中,此时才可以查询到元数据。具体操作如下: */ --在hdfs创建目录并上传文件 hdfs dfs -mkdir /msb hdfs dfs -mkdir /msb/age=10 hdfs dfs -mkdir /msb/age=20 hdfs dfs -put /root/data/data /msb/age=10 hdfs dfs -put /root/data/data /msb/age=20 --创建外部表 create external table psn7 ( id int, name string, likes array<string>, address map<string,string> ) partitioned by(age int) row format delimited fields terminated by ',' collection items terminated by '-' map keys terminated by ':' location '/msb'; --查询结果(没有数据) select * from psn7; --修复分区 msck repair table psn7; --查询结果(有数据) select * from psn7; /* 问题: 以上面的方式创建hive的分区表会存在问题,每次插入的数据都是人为指定分区列的值,我们更加希望能够根 据记录中的某一个字段来判断将数据插入到哪一个分区目录下,此时利用我们上面的分区方式是无法完成操作 的,需要使用动态分区来完成相关操作,现在学的知识点无法满足,后续讲解。 */
Hive DML
1、插入数据
1、Loading files into tables
/* 记载数据文件到某一张表中 语法: LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)] LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)] [INPUTFORMAT 'inputformat' SERDE 'serde'] (3.0 or later) */ --加载本地数据到hive表 load data local inpath '/root/data/data' into table psn;--(/root/data/data指的是本地 linux目录) --加载hdfs数据文件到hive表 load data inpath '/data/data' into table psn;--(/data/data指的是hdfs的目录) /* 注意: 1、load操作不会对数据做任何的转换修改操作 2、从本地linux load数据文件是复制文件的过程 3、从hdfs load数据文件是移动文件的过程 4、load操作也支持向分区表中load数据,只不过需要添加分区列的值 */
2、Inserting data into Hive Tables from queries
/* 从查询语句中获取数据插入某张表 语法: Standard syntax: INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...) [IF NOT EXISTS]] select_statement1 FROM from_statement; INSERT INTO TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...)] select_statement1 FROM from_statement; Hive extension (multiple inserts): FROM from_statement INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...) [IF NOT EXISTS]] select_statement1 [INSERT OVERWRITE TABLE tablename2 [PARTITION ... [IF NOT EXISTS]] select_statement2] [INSERT INTO TABLE tablename2 [PARTITION ...] select_statement2] ...; FROM from_statement INSERT INTO TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...)] select_statement1 [INSERT INTO TABLE tablename2 [PARTITION ...] select_statement2] [INSERT OVERWRITE TABLE tablename2 [PARTITION ... [IF NOT EXISTS]] select_statement2] ...; Hive extension (dynamic partition inserts): INSERT OVERWRITE TABLE tablename PARTITION (partcol1[=val1], partcol2[=val2] ...) select_statement FROM from_statement; INSERT INTO TABLE tablename PARTITION (partcol1[=val1], partcol2[=val2] ...) select_statement FROM from_statement; */ --注意:这种方式插入数据的时候需要预先创建好结果表 --从表中查询数据插入结果表 INSERT OVERWRITE TABLE psn9 SELECT id,name FROM psn --从表中获取部分列插入到新表中 from psn insert overwrite table psn9 select id,name insert into table psn10 select id
3、Writing data into the filesystem from queries
/* 将查询到的结果插入到文件系统中 语法: Standard syntax: INSERT OVERWRITE [LOCAL] DIRECTORY directory1 [ROW FORMAT row_format] [STORED AS file_format] (Note: Only available starting with Hive 0.11.0) SELECT ... FROM ... Hive extension (multiple inserts): FROM from_statement INSERT OVERWRITE [LOCAL] DIRECTORY directory1 select_statement1 [INSERT OVERWRITE [LOCAL] DIRECTORY directory2 select_statement2] ... row_format : DELIMITED [FIELDS TERMINATED BY char [ESCAPED BY char]] [COLLECTION ITEMS TERMINATED BY char] [MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char] [NULL DEFINED AS char] (Note: Only available starting with Hive 0.13) */ --注意:路径千万不要填写根目录,会把所有的数据文件都覆盖 --将查询到的结果导入到hdfs文件系统中 insert overwrite directory '/result' select * from psn; --将查询的结果导入到本地文件系统中 insert overwrite local directory '/result' select * from psn;
4、Inserting values into tables from SQL
/* 使用传统关系型数据库的方式插入数据,效率较低 语法: Standard Syntax: INSERT INTO TABLE tablename [PARTITION (partcol1[=val1], partcol2[=val2] ...)] VALUES values_row [, values_row ...] Where values_row is: ( value [, value ...] ) where a value is either null or any valid SQL literal */ --插入数据 insert into psn values(1,'zhangsan')
2、数据更新和删除
在官网中我们明确看到hive中是支持Update和Delete操作的,但是实际上,是需要事务的支持的,Hive对于事务的支持有很多的限制,如下图所示:
因此,在使用hive的过程中,我们一般不会产生删除和更新的操作,如果你需要测试的话,参考下面如下配置:
//在hive的hive-site.xml中添加如下配置: <property> <name>hive.support.concurrency</name> <value>true</value> </property> <property> <name>hive.enforce.bucketing</name> <value>true</value> </property> <property> <name>hive.exec.dynamic.partition.mode</name> <value>nonstrict</value> </property> <property> <name>hive.txn.manager</name> <value>org.apache.hadoop.hive.ql.lockmgr.DbTxnManager</value> </property> <property> <name>hive.compactor.initiator.on</name> <value>true</value> </property> <property> <name>hive.compactor.worker.threads</name> <value>1</value> </property> //操作语句 create table test_trancaction (user_id Int,name String) clustered by (user_id) into 3 buckets stored as orc TBLPROPERTIES ('transactional'='true'); create table test_insert_test(id int,name string) row format delimited fields TERMINATED BY ','; insert into test_trancaction select * from test_insert_test; update test_trancaction set name='jerrick_up' where id=1; //数据文件 1,jerrick 2,tom 3,jerry 4,lily 5,hanmei 6,limlei 7,lucky
这篇关于大数据hive相关知识学习记录-Hive基本SQL操作-丁力士-4的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-14使用AWS Lambda和S3打造智能文件整理器 - (动手搭建系列)
- 2024-11-14Netflix简化营收基础设施中的合同管理工具
- 2024-11-142024年必备的6款开源Terraform神器
- 2024-11-14Spin 3.0来啦:全新功能让你的无服务器Wasm应用开发更上一层楼
- 2024-11-14如何高效管理项目?小团队到大企业的多功能项目管理工具推荐
- 2024-11-1333 张高清大图,带你玩转 KubeSphere 4.1.2 部署与扩展组件安装
- 2024-11-11Spark 新作《循序渐进 Spark 大数据应用开发》简介
- 2024-11-11KubeSphere 社区双周报| 2024.10.25-11.07
- 2024-11-11云原生周刊:Istio 1.24.0 正式发布
- 2024-11-10一个故事,为你理清云开发服务的选择思路