Hadoop3.x高可用集群,HDFS、Yarn集群

2022/2/15 6:12:28

本文主要是介绍Hadoop3.x高可用集群,HDFS、Yarn集群,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

集群环境规划

将整个 ha 搭建完成后,集群将形成以下模样

hadoop101 hadoop102 hadoop103
NameNode NameNode NameNode
JournalNode JournalNode JournalNode
DataNode DataNode DataNode
Zookeeper Zookeeper Zookeeper
ZKFC ZKFC ZKFC
ResourceManager ResourceManager ResourceManager
NodeManager NodeManager NodeManager

1.配置 core-site.xml

<configuration>
    <!-- 把多个 NameNode 的地址组装成一个集群 mycluster -->
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://mycluster</value>
    </property>
    <!-- 指定 hadoop 运行时产生文件的存储目录 -->
    <property>
        <name>hadoop.tmp.dir</name>
        <value>/opt/ha/hadoop-3.3.1/data</value>
    </property>
    <!--webUI展示时的用户-->
    <property> 
        <name>hadoop.http.staticuser.user</name>            
        <value>hadoop</value> 
    </property>
    <!-- 指定 zkfc 要连接的 zkServer 地址 -->
    <property>
        <name>ha.zookeeper.quorum</name>
        <value>hadoop101:2181,hadoop102:2181,hadoop103:2181</value>
    </property>
    <!-- NN 连接 JN 重试次数,默认是 10 次 -->
    <property>
        <name>ipc.client.connect.max.retries</name>
        <value>20</value>
    </property>
    <!-- 重试时间间隔,默认 1s -->
    <property>
        <name>ipc.client.connect.retry.interval</name>
        <value>5000</value>
    </property>
</configuration>

2.配置 hdfs-site.xml

<configuration>
    <!-- NameNode 数据存储目录 -->
    <property>
        <name>dfs.namenode.name.dir</name>
        <value>file://${hadoop.tmp.dir}/name</value>
    </property>
    <!-- DataNode 数据存储目录 -->
    <property>
        <name>dfs.datanode.data.dir</name>
        <value>file://${hadoop.tmp.dir}/data</value>
    </property>
    <!-- JournalNode 数据存储目录 -->
    <property>
        <name>dfs.journalnode.edits.dir</name>
        <value>${hadoop.tmp.dir}/jn</value>
    </property>
    <!-- 完全分布式集群名称 -->
    <property>
        <name>dfs.nameservices</name>
        <value>mycluster</value>
    </property>
    <!-- 集群中 NameNode 节点都有哪些 -->
    <property>
        <name>dfs.ha.namenodes.mycluster</name>
        <value>nn1,nn2,nn3</value>
    </property>
    <!-- NameNode 的 RPC 通信地址 -->
    <property>
        <name>dfs.namenode.rpc-address.mycluster.nn1</name>
        <value>hadoop101:8020</value>
    </property>
    <property>
        <name>dfs.namenode.rpc-address.mycluster.nn2</name>
        <value>hadoop102:8020</value>
    </property>
    <property>
        <name>dfs.namenode.rpc-address.mycluster.nn3</name>
        <value>hadoop103:8020</value>
    </property>
    <!-- NameNode 的 http 通信地址 -->
    <property>
        <name>dfs.namenode.http-address.mycluster.nn1</name>
        <value>hadoop101:9870</value>
    </property>
    <property>
        <name>dfs.namenode.http-address.mycluster.nn2</name>
        <value>hadoop102:9870</value>
    </property>
    <property>
        <name>dfs.namenode.http-address.mycluster.nn3</name>
        <value>hadoop103:9870</value>
    </property>
    <!-- 指定 NameNode 元数据在 JournalNode 上的存放位置 -->
    <property>
        <name>dfs.namenode.shared.edits.dir</name>
        <value>qjournal://hadoop101:8485;hadoop102:8485;hadoop103:8485/mycluster</value>
    </property>
    <!-- 访问代理类: client 用于确定哪个 NameNode 为 Active -->
    <property>
        <name>dfs.client.failover.proxy.provider.mycluster</name>
        <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
    </property>
    <!-- 配置隔离机制,即同一时刻只能有一台服务器对外响应 -->
    <property>
        <name>dfs.ha.fencing.methods</name>
        <value>sshfence</value>
    </property>
    <!-- 使用隔离机制时需要 ssh 秘钥登录-->
    <property>
        <name>dfs.ha.fencing.ssh.private-key-files</name>
        <value>/home/usr1/.ssh/id_rsa</value>
    </property>
    <!-- 启用 nn 故障自动转移 -->
    <property>
        <name>dfs.ha.automatic-failover.enabled</name>
        <value>true</value>
    </property>
</configuration>

3.配置 yarn-site.xml

<configuration>
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
    <!-- 启用 resourcemanager ha -->
    <property>
        <name>yarn.resourcemanager.ha.enabled</name>
        <value>true</value>
    </property>
    <!-- 声明 resourcemanager 的地址 -->
    <property>
        <name>yarn.resourcemanager.cluster-id</name>
        <value>cluster-yarn1</value>
    </property>
    <!--指定 resourcemanager 的逻辑列表-->
    <property>
        <name>yarn.resourcemanager.ha.rm-ids</name>
        <value>rm1,rm2,rm3</value>
    </property>
    <!-- ========== rm1 的配置 ========== -->
    <!-- 指定 rm1 的主机名 -->
    <property>
        <name>yarn.resourcemanager.hostname.rm1</name>
        <value>hadoop101</value>
    </property>
    <!-- 指定 rm1 的 web 端地址 -->
    <property>
        <name>yarn.resourcemanager.webapp.address.rm1</name>
        <value>hadoop101:8088</value>
    </property>
    <!-- 指定 rm1 的内部通信地址 -->
    <property>
        <name>yarn.resourcemanager.address.rm1</name>
        <value>hadoop101:8032</value>
    </property>
    <!-- 指定 AM 向 rm1 申请资源的地址 -->
    <property>
        <name>yarn.resourcemanager.scheduler.address.rm1</name>
        <value>hadoop101:8030</value>
    </property>
    <!-- 指定供 NM 连接的地址 -->
    <property>
        <name>yarn.resourcemanager.resource-tracker.address.rm1</name>
        <value>hadoop101:8031</value>
    </property>
    <!-- ========== rm2 的配置 ========== -->
    <!-- 指定 rm2 的主机名 -->
    <property>
        <name>yarn.resourcemanager.hostname.rm2</name>
        <value>hadoop102</value>
    </property>
    <property>
        <name>yarn.resourcemanager.webapp.address.rm2</name>
        <value>hadoop102:8088</value>
    </property>
    <property>
        <name>yarn.resourcemanager.address.rm2</name>
        <value>hadoop102:8032</value>
    </property>
    <property>
        <name>yarn.resourcemanager.scheduler.address.rm2</name>
        <value>hadoop102:8030</value>
    </property>
    <property>
        <name>yarn.resourcemanager.resource-tracker.address.rm2</name>
        <value>hadoop102:8031</value>
    </property>
    <!-- ========== rm3 的配置 ========== -->
    <!-- 指定 rm1 的主机名 -->
    <property>
        <name>yarn.resourcemanager.hostname.rm3</name>
        <value>hadoop103</value>
    </property>
    <!-- 指定 rm1 的 web 端地址 -->
    <property>
        <name>yarn.resourcemanager.webapp.address.rm3</name>
        <value>hadoop103:8088</value>
    </property>
    <!-- 指定 rm1 的内部通信地址 -->
    <property>
        <name>yarn.resourcemanager.address.rm3</name>
        <value>hadoop103:8032</value>
    </property>
    <!-- 指定 AM 向 rm1 申请资源的地址 -->
    <property>
        <name>yarn.resourcemanager.scheduler.address.rm3</name>
        <value>hadoop103:8030</value>
    </property>
    <!-- 指定供 NM 连接的地址 -->
    <property>
        <name>yarn.resourcemanager.resource-tracker.address.rm3</name>
        <value>hadoop103:8031</value>
    </property>
    <!-- 指定 zookeeper 集群的地址 -->
    <property>
        <name>yarn.resourcemanager.zk-address</name>
        <value>hadoop101:2181,hadoop102:2181,hadoop103:2181</value>
    </property>
    <!-- 启用自动恢复 -->
    <property>
        <name>yarn.resourcemanager.recovery.enabled</name>
        <value>true</value>
    </property>
    <!-- 指定 resourcemanager 的状态信息存储在 zookeeper 集群 -->
    <property>
        <name>yarn.resourcemanager.store.class</name>
        <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
    </property>
    <!-- 环境变量的继承 -->
    <property>
        <name>yarn.nodemanager.env-whitelist</name>
        <value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLAS
SPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOME</value>
    </property>
</configuration>

4.配置mapred-site.xml

<configuration>
    <!-- 指定MapReduce程序运行在Yarn上 -->
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
</configuration>

最后配置works

hadoop101
hadoop102
hadoop103

分发配置好的 hadoop 环境到其他节点

5.启动 HDFS-HA 集群

前提先启动zookeeper集群

  1. 初始化 HA 在 Zookeeper 中状态:
[hadoop@hadoop101 ~]$ hdfs zkfc -formatZK  
  1. 在各个 JournalNode 节点上,输入以下命令启动 journalnode 服务
[hadoop@hadoop101 ~]$ hdfs --daemon start journalnode
[hadoop@hadoop102 ~]$ hdfs --daemon start journalnode
[hadoop@hadoop103 ~]$ hdfs --daemon start journalnode

3)在[nn1]上,对其进行格式化, 并启动

[hadoop@hadoop101 ~]$ hdfs namenode -format
[hadoop@hadoop101 ~]$ hdfs --daemon start namenode

4)在[nn2]和[nn3]上,同步 nn1 的元数据信息

[hadoop@hadoop102 ~]$ hdfs namenode -bootstrapStandby
[hadoop@hadoop103 ~]$ hdfs namenode -bootstrapStandby

5)启动[nn2]和[nn3]

[hadoop@hadoop102 ~]$ hdfs --daemon start namenode
[hadoop@hadoop103 ~]$ hdfs --daemon start namenode  
  1. 启动 HDFS 服务:
[hadoop@hadoop101 ~]$ start-dfs.sh  
  1. 启动 YARN
[hadoop@hadoop101 ~]$ start-yarn.sh


这篇关于Hadoop3.x高可用集群,HDFS、Yarn集群的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程