6.延迟队列
2022/2/17 6:14:43
本文主要是介绍6.延迟队列,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
目录- 6.延迟队列
- 6.1延迟队列概念
- 6.2RabbitMQ 中的 TTL
- 6.2.1消息设置 TTL
- 6.2.2队列设置 TTL
- 6.2.3两者的区别
- 6.3队列 TTL
- 6.3.1代码架构图
- 6.3.2配置文件类代码
- 6.3.3消息生产者代码
- 6.3.4消息消费者代码
- 6.4延时队列优化
- 6.4.1代码架构图
- 6.4.2配置文件类代码
- 6.4.3消息生产者代码
- 6.5Rabbitmq 插件实现延迟队列
- 6.5.1安装延时队列插件
- 6.5.2代码架构图
- 6.5.3配置文件类代码
- 6.5.4消息生产者代码
- 6.5.5消息消费者代码
6.延迟队列
6.1延迟队列概念
延时队列,队列内部是有序的,最重要的特性就体现在它的延时属性上,延时队列中的元素是希望在指定时间到了以后或之前取出和处理,简单来说,延时队列就是用来存放需要在指定时间被处理的元素的队列。
6.2RabbitMQ 中的 TTL
TTL 是 RabbitMQ 中一个消息或者队列的属性,表明一条消息或者该队列中的所有消息的最大存活时间,单位是毫秒。换句话说,如果一条消息设置了 TTL 属性或者进入了设置 TTL 属性的队列,那么这条消息如果在 TTL 设置的时间内没有被消费,则会成为"死信"。如果同时配置了队列的 TTL 和消息的TTL,那么较小的那个值将会被使用,有两种方式设置 TTL。
6.2.1消息设置 TTL
针对每条消息设置 TTL
6.2.2队列设置 TTL
在创建队列的时候设置队列的“x-message-ttl”属性
6.2.3两者的区别
如果设置了队列的 TTL 属性,那么一旦消息过期,就会被队列丢弃(如果配置了死信队列被丢到死信队列中),而第二种方式,消息即使过期,也不一定会被马上丢弃,因为消息是否过期是在即将投递到消费者之前判定的,如果当前队列有严重的消息积压情况,则已过期的消息也许还能存活较长时间;另外,还需要注意的一点是,如果不设置 TTL,表示消息永远不会过期,如果将 TTL 设置为 0,则表示除非此时可以直接投递该消息到消费者,否则该消息将会被丢弃。前一小节我们介绍了死信队列,刚刚又介绍了 TTL,至此利用 RabbitMQ 实现延时队列的两大要素已经集齐,接下来只需要将它们进行融合,再加入一点点调味料,延时队列就可以新鲜出炉了。想想看,延时队列,不就是想要消息延迟多久被处理吗, TTL 则刚好能让消息在延迟多久之后成为死信,另一方面,成为死信的消息都会被投递到死信队列里,这样只需要消费者一直消费死信队列里的消息就完事了,因为里面的消息都是希望被立即处理的消息。
6.3队列 TTL
6.3.1代码架构图
创建两个队列 QA 和 QB,两者队列 TTL 分别设置为 10S 和 40S,然后在创建一个交换机 X 和死信交换机 Y,它们的类型都是 direct,创建一个死信队列 QD,它们的绑定关系如下:
6.3.2配置文件类代码
@Configuration public class TtlQueueConfig { public static final String X_EXCHANGE = "X"; public static final String QUEUE_A = "QA"; public static final String QUEUE_B = "QB"; public static final String Y_DEAD_LETTER_EXCHANGE = "Y"; public static final String DEAD_LETTER_QUEUE = "QD"; // 声明 xExchange @Bean("xExchange") public DirectExchange xExchange() { return new DirectExchange(X_EXCHANGE); } // 声明 xExchange @Bean("yExchange") public DirectExchange yExchange() { return new DirectExchange(Y_DEAD_LETTER_EXCHANGE); } // 声明队列 A ttl 为 10s 并绑定到对应的死信交换机 @Bean("queueA") public Queue queueA() { Map<String, Object> args = new HashMap<>(3); //声明当前队列绑定的死信交换机 args.put("x-dead-letter-exchange", Y_DEAD_LETTER_EXCHANGE); //声明当前队列的死信路由 key args.put("x-dead-letter-routing-key", "YD"); //声明队列的 TTL args.put("x-message-ttl", 10000); return QueueBuilder.durable(QUEUE_A).withArguments(args).build(); } // 声明队列 A 绑定 X 交换机 @Bean public Binding queueaBindingX(@Qualifier("queueA") Queue queueA, @Qualifier("xExchange") DirectExchange xExchange) { return BindingBuilder.bind(queueA).to(xExchange).with("XA"); } // 声明队列 B ttl 为 40s 并绑定到对应的死信交换机 @Bean("queueB") public Queue queueB() { Map<String, Object> args = new HashMap<>(3); //声明当前队列绑定的死信交换机 args.put("x-dead-letter-exchange", Y_DEAD_LETTER_EXCHANGE); //声明当前队列的死信路由 key args.put("x-dead-letter-routing-key", "YD"); //声明队列的 TTL args.put("x-message-ttl", 40000); return QueueBuilder.durable(QUEUE_B).withArguments(args).build(); } // 声明队列 B 绑定 X 交换机 @Bean public Binding queuebBindingX(@Qualifier("queueB") Queue queue1B, @Qualifier("xExchange") DirectExchange xExchange) { return BindingBuilder.bind(queue1B).to(xExchange).with("XB"); } // 声明死信队列 QD @Bean("queueD") public Queue queueD() { return new Queue(DEAD_LETTER_QUEUE); } // 声明死信队列 QD 绑定关系 @Bean public Binding deadLetterBindingQAD(@Qualifier("queueD") Queue queueD, @Qualifier("yExchange") DirectExchange yExchange) { return BindingBuilder.bind(queueD).to(yExchange).with("YD"); } }
6.3.3消息生产者代码
@Slf4j @RequestMapping("ttl") @RestController public class SendMsgController { @Autowired private RabbitTemplate rabbitTemplate; @GetMapping("sendMsg/{message}") public void sendMsg(@PathVariable String message) { log.info("当前时间: {},发送一条信息给两个 TTL 队列:{}", new Date(), message); rabbitTemplate.convertAndSend("X", "XA", "消息来自 ttl 为 10S 的队列: " + message); rabbitTemplate.convertAndSend("X", "XB", "消息来自 ttl 为 40S 的队列: " + message); } }
6.3.4消息消费者代码
@Slf4j @Component public class DeadLetterQueueConsumer { /** * 监听队列 QD * * @param message * @param channel * @throws IOException */ @RabbitListener(queues = "QD") public void receiveD(Message message, Channel channel) throws IOException { String msg = new String(message.getBody()); log.info("当前时间: {},收到死信队列信息{}", new Date().toString(), msg); } }
发起一个请求 http://localhost:8080/ttl/sendMsg/嘻嘻嘻
第一条消息在 10S 后变成了死信消息,然后被消费者消费掉,第二条消息在 40S 之后变成了死信消息,然后被消费掉,这样一个延时队列就打造完成了。
不过,如果这样使用的话,岂不是每增加一个新的时间需求,就要新增一个队列,这里只有 10S 和 40S两个时间选项,如果需要一个小时后处理,那么就需要增加 TTL 为一个小时的队列,如果是预定会议室然后提前通知这样的场景,岂不是要增加无数个队列才能满足需求?
6.4延时队列优化
6.4.1代码架构图
在这里新增了一个队列 QC,绑定关系如下,该队列不设置 TTL 时间
6.4.2配置文件类代码
@Component public class MsgTtlQueueConfig { public static final String Y_DEAD_LETTER_EXCHANGE = "Y"; public static final String QUEUE_C = "QC"; // 声明队列 C 死信交换机 @Bean("queueC") public Queue queueB() { Map<String, Object> args = new HashMap<>(3); // 声明当前队列绑定的死信交换机 args.put("x-dead-letter-exchange", Y_DEAD_LETTER_EXCHANGE); // 声明当前队列的死信路由 key args.put("x-dead-letter-routing-key", "YD"); // 没有声明 TTL 属性 return QueueBuilder.durable(QUEUE_C).withArguments(args).build(); } // 声明队列 B 绑定 X 交换机 @Bean public Binding queuecBindingX(@Qualifier("queueC") Queue queueC, @Qualifier("xExchange") DirectExchange xExchange) { return BindingBuilder.bind(queueC).to(xExchange).with("XC"); } }
6.4.3消息生产者代码
@Slf4j @RequestMapping("ttl") @RestController public class SendMsgController { @Autowired private RabbitTemplate rabbitTemplate; @GetMapping("sendMsg/{message}") public void sendMsg(@PathVariable String message) { log.info("当前时间: {},发送一条信息给两个 TTL 队列:{}", new Date(), message); rabbitTemplate.convertAndSend("X", "XA", "消息来自 ttl 为 10S 的队列: " + message); rabbitTemplate.convertAndSend("X", "XB", "消息来自 ttl 为 40S 的队列: " + message); } @GetMapping("sendExpirationMsg/{message}/{ttlTime}") public void sendMsg(@PathVariable String message,@PathVariable String ttlTime) { rabbitTemplate.convertAndSend("X", "XC", message, correlationData ->{ correlationData.getMessageProperties().setExpiration(ttlTime); return correlationData; }); log.info("当前时间: {},发送一条时长{}毫秒 TTL 信息给队列 C:{}", new Date(),ttlTime, message); } }
发起请求 http://localhost:8080/ttl/sendExpirationMsg/你好 1/20000 http://localhost:8080/ttl/sendExpirationMsg/你好 2/2000
看起来似乎没什么问题,但是在最开始的时候,就介绍过如果使用在消息属性上设置 TTL 的方式,消息可能并不会按时“死亡“,因为 RabbitMQ 只会检查第一个消息是否过期,如果过期则丢到死信队列,如果第一个消息的延时时长很长,而第二个消息的延时时长很短,第二个消息并不会优先得到执行。
6.5Rabbitmq 插件实现延迟队列
上文中提到的问题,确实是一个问题,如果不能实现在消息粒度上的 TTL,并使其在设置的 TTL 时间及时死亡,就无法设计成一个通用的延时队列。
6.5.1安装延时队列插件
在官网上下载 https://www.rabbitmq.com/community-plugins.html,下载 rabbitmq_delayed_message_exchange 插件,然后解压放置到 RabbitMQ 的插件目录。 进入 RabbitMQ 的安装目录下的 plgins 目录,执行下面命令让该插件生效,然后重启 RabbitMQ /usr/lib/rabbitmq/lib/rabbitmq_server-3.8.8/plugins rabbitmq-plugins enable rabbitmq_delayed_message_exchange
RabbitMQ的web控制台exchange:
6.5.2代码架构图
在这里新增了一个队列 delayed.queue,一个自定义交换机 delayed.exchange,绑定关系如下:
6.5.3配置文件类代码
在我们自定义的交换机中,这是一种新的交换类型,该类型消息支持延迟投递机制 消息传递后并不会立即投递到目标队列中,而是存储在 mnesia(一个分布式数据系统)表中,当达到投递时间时,才投递到目标队列中。
@Configuration public class DelayedQueueConfig { public static final String DELAYED_QUEUE_NAME = "delayed.queue"; public static final String DELAYED_EXCHANGE_NAME = "delayed.exchange"; public static final String DELAYED_ROUTING_KEY = "delayed.routingkey"; @Bean public Queue delayedQueue() { return new Queue(DELAYED_QUEUE_NAME); } // 自定义交换机 我们在这里定义的是一个延迟交换机 @Bean public CustomExchange delayedExchange() { Map<String, Object> arguments = new HashMap<>(); // 自定义交换机的类型 arguments.put("x-delayed-type", "direct"); /* * 这里定义了交换器的类型 "x-delayed-message" ,但是在配置arguments参数时 * 又指定了 "x-delayed-type" 类型,这个延时交换机到底和队列如何进行匹配, * direct就是使用直接类型,消息确实延迟了,但是怎么发到队列?是要扇出还是直连,所以设置类型。 * */ return new CustomExchange(DELAYED_EXCHANGE_NAME, "x-delayed-message", true, false, arguments); } @Bean public Binding bindingDelayedQueue(@Qualifier("delayedQueue") Queue queue, @Qualifier("delayedExchange") CustomExchange delayedExchange) { return BindingBuilder.bind(queue).to(delayedExchange).with(DELAYED_ROUTING_KEY).noargs(); } }
6.5.4消息生产者代码
@Slf4j @RequestMapping("ttl") @RestController public class SendMsgController { @Autowired private RabbitTemplate rabbitTemplate; public static final String DELAYED_EXCHANGE_NAME = "delayed.exchange"; public static final String DELAYED_ROUTING_KEY = "delayed.routingkey"; @GetMapping("sendDelayMsg/{message}/{delayTime}") public void sendMsg(@PathVariable String message, @PathVariable Integer delayTime) { rabbitTemplate.convertAndSend(DELAYED_EXCHANGE_NAME, DELAYED_ROUTING_KEY, message, correlationData -> { correlationData.getMessageProperties().setDelay(delayTime); return correlationData; }); log.info(" 当前时间:{}, 发送一条延迟{}毫秒的信息给队列delayed.queue:{}", new Date(), delayTime, message); } }
6.5.5消息消费者代码
@Slf4j @Component public class DeadLetterQueueConsumer { public static final String DELAYED_QUEUE_NAME = "delayed.queue"; @RabbitListener(queues = DELAYED_QUEUE_NAME) public void receiveDelayedQueue(Message message) { String msg = new String(message.getBody()); log.info("当前时间: {},收到延时队列的消息: {}", new Date().toString(), msg); } }
发起请求: http://localhost:8080/ttl/sendDelayMsg/come on baby1/20000 http://localhost:8080/ttl/sendDelayMsg/come on baby2/2000
第二个消息被先消费掉了,符合预期
结论:
延时队列在需要延时处理的场景下非常有用,使用 RabbitMQ 来实现延时队列可以很好的利用RabbitMQ 的特性,如:消息可靠发送、消息可靠投递、死信队列来保障消息至少被消费一次以及未被正确处理的消息不会被丢弃。另外,通过RabbitMQ 集群的特性,可以很好的解决单点故障问题,不会因为单个节点挂掉导致延时队列不可用或者消息丢失。 当然,延时队列还有很多其它选择,比如利用 Java 的 DelayQueue,利用 Redis 的 zset,利用 Quartz或者利用 kafka 的时间轮,这些方式各有特点,看需要适用的场景
这篇关于6.延迟队列的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-04百万架构师第六课:设计模式:策略模式及模板模式
- 2025-01-04百万架构师第七课:设计模式:装饰器模式及观察者模式
- 2025-01-04适用于企业管理的协作工具API推荐
- 2025-01-04挑战16:被限流的CPU
- 2025-01-03企业在选择工具时,如何评估其背后的技术团队
- 2025-01-03Angular中打造动态多彩标签组件的方法
- 2025-01-03Flask过时了吗?FastAPI才是未来?
- 2025-01-0311个每位开发者都应知道的免费实用网站
- 2025-01-03从REST到GraphQL:为什么以及我是如何完成转型的
- 2025-01-03掌握RAG:从单次问答到连续对话