【Hard Python】【第二章-异步IO】2、异步任务在事件循环中的执行
2022/2/20 22:32:54
本文主要是介绍【Hard Python】【第二章-异步IO】2、异步任务在事件循环中的执行,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
接续第一话的内容,事件循环在创建之后,又是如何运行协程任务以及异步IO任务的?
由asyncio.run
的代码可知,loop.run_until_complete
是运行协程的方法。其定义如下:
# base_events.py class BaseEventLoop(events.AbstractEventLoop): def run_until_complete(self, future): self._check_closed() self._check_running() new_task = not futures.isfuture(future) future = tasks.ensure_future(future, loop=self) if new_task: future._log_destroy_pending = False future.add_done_callback(_run_until_complete_cb) try: self.run_forever() except: if new_task and future.done() and not future.cancelled(): future.exception() raise finally: future.remove_done_callback(_run_until_complete_cb) if not future.done(): raise RuntimeError('Event loop stopped before Future completed.') return future.result() # tasks.py def ensure_future(coro_or_future, *, loop=None): return _ensure_future(coro_or_future, loop=loop) def _ensure_future(coro_or_future, *, loop=None): if futures.isfuture(coro_or_future): if loop is not None and loop is not futures._get_loop(coro_or_future): raise ValueError('The future belongs to a different loop than ' 'the one specified as the loop argument') return coro_or_future if not coroutines.iscoroutine(coro_or_future): if inspect.isawaitable(coro_or_future): coro_or_future = _wrap_awaitable(coro_or_future) else: raise TypeError('An asyncio.Future, a coroutine or an awaitable ' 'is required') if loop is None: loop = events._get_event_loop(stacklevel=4) return loop.create_task(coro_or_future)
run_until_complete
方法传入的协程会通过tasks.ensure_future
方法被封装成一个task
实例,从上述的代码可以看到,最终落实到了loop.create_task
方法。
# base_events.py class BaseEventLoop(events.AbstractEventLoop): def create_task(self, coro, *, name=None): self._check_closed() if self._task_factory is None: task = tasks.Task(coro, loop=self, name=name) if task._source_traceback: del task._source_traceback[-1] else: task = self._task_factory(self, coro) tasks._set_task_name(task, name) return task # task.py class Task(futures._PyFuture): def __init__(self, coro, *, loop=None, name=None): super().__init__(loop=loop) if self._source_traceback: del self._source_traceback[-1] if not coroutines.iscoroutine(coro): self._log_destroy_pending = False raise TypeError(f"a coroutine was expected, got {coro!r}") if name is None: self._name = f'Task-{_task_name_counter()}' else: self._name = str(name) self._must_cancel = False self._fut_waiter = None self._coro = coro self._context = contextvars.copy_context() self._loop.call_soon(self.__step, context=self._context) _register_task(self) # base_events.py class BaseEventLoop(events.AbstractEventLoop): def call_soon(self, callback, *args, context=None): self._check_closed() if self._debug: self._check_thread() self._check_callback(callback, 'call_soon') handle = self._call_soon(callback, args, context) if handle._source_traceback: del handle._source_traceback[-1] return handle def _call_soon(self, callback, args, context): handle = events.Handle(callback, args, self, context) if handle._source_traceback: del handle._source_traceback[-1] self._ready.append(handle) return handle
loop.create_task
方法最终会生成一个Task
实例。Task
实例封装了协程以及其它一系列变量,最终调用loop
的call_soon
方法,传入了实例的__step
函数。call_soon
方法传入的函数,会通过events.Handle
封装生成一个handle
实例,并加入到事件循环的_ready
队列中。
__step
方法会通过coro.send(None)
或是coro.throw(exc)
方法启动Task
实例内部的协程并获取协程的返回结果,对于一般协程而言coro.send(None)
会直接throw
一个StopIteration
异常,并在异常结果里附上协程返回值。当然,也有其它情况(比如await
了一个yield
多次的Awaitable
实例)可能要多次call_soon
协程Task
的__step
函数,相关的例子可以查看stackoverflow的这篇文章。
在这之后,我们再回到run_until_complete
方法,在ensure_future
后,便调用loop.run_forever
方法,启动事件循环。
# windows_events.py class ProactorEventLoop(proactor_events.BaseProactorEventLoop): def run_forever(self): try: assert self._self_reading_future is None self.call_soon(self._loop_self_reading) super().run_forever() finally: if self._self_reading_future is not None: ov = self._self_reading_future._ov self._self_reading_future.cancel() if ov is not None: self._proactor._unregister(ov) self._self_reading_future = None # proactor_events.py class BaseProactorEventLoop(base_events.BaseEventLoop): def _loop_self_reading(self, f=None): try: if f is not None: f.result() # may raise if self._self_reading_future is not f: return f = self._proactor.recv(self._ssock, 4096) except exceptions.CancelledError: return except (SystemExit, KeyboardInterrupt): raise except BaseException as exc: self.call_exception_handler({ 'message': 'Error on reading from the event loop self pipe', 'exception': exc, 'loop': self, }) else: self._self_reading_future = f f.add_done_callback(self._loop_self_reading) # base_events.py class BaseEventLoop(events.AbstractEventLoop): def run_forever(self): self._check_closed() self._check_running() self._set_coroutine_origin_tracking(self._debug) self._thread_id = threading.get_ident() old_agen_hooks = sys.get_asyncgen_hooks() sys.set_asyncgen_hooks(firstiter=self._asyncgen_firstiter_hook, finalizer=self._asyncgen_finalizer_hook) try: events._set_running_loop(self) while True: self._run_once() if self._stopping: break finally: self._stopping = False self._thread_id = None events._set_running_loop(None) self._set_coroutine_origin_tracking(False) sys.set_asyncgen_hooks(*old_agen_hooks) def _run_once(self): sched_count = len(self._scheduled) if (sched_count > _MIN_SCHEDULED_TIMER_HANDLES and self._timer_cancelled_count / sched_count > _MIN_CANCELLED_TIMER_HANDLES_FRACTION): new_scheduled = [] for handle in self._scheduled: if handle._cancelled: handle._scheduled = False else: new_scheduled.append(handle) heapq.heapify(new_scheduled) self._scheduled = new_scheduled self._timer_cancelled_count = 0 else: while self._scheduled and self._scheduled[0]._cancelled: self._timer_cancelled_count -= 1 handle = heapq.heappop(self._scheduled) handle._scheduled = False timeout = None if self._ready or self._stopping: timeout = 0 elif self._scheduled: # Compute the desired timeout. when = self._scheduled[0]._when timeout = min(max(0, when - self.time()), MAXIMUM_SELECT_TIMEOUT) event_list = self._selector.select(timeout) self._process_events(event_list) end_time = self.time() + self._clock_resolution while self._scheduled: handle = self._scheduled[0] if handle._when >= end_time: break handle = heapq.heappop(self._scheduled) handle._scheduled = False self._ready.append(handle) ntodo = len(self._ready) for i in range(ntodo): handle = self._ready.popleft() if handle._cancelled: continue if self._debug: # debug模式下代码,加了时间统计 else: handle._run() handle = None # Needed to break cycles when an exception occurs.
ProactorEventLoop
在调用run_forever
时,首先会用call_soon
方法将_loop_self_reading
方法加入排期。_loop_self_reading
方法会读取proactor
中的future
,并且将自己加入future
的完成时回调,实现不间断地读取future
实例。
之后,ProactorEventLoop
调用了BaseEventLoop
的run_forever
方法,在其中会不断执行_run_once
方法去一遍遍地迭代事件循环。一轮_run_once
会做以下几件事情:
- 清理
_scheduled
中被取消的定时任务 select
出事件列表并进行处理- 从
_scheduled
取出到时的任务,加入到_ready
列表中- 由上面的逻辑也可知,
call_soon
的任务也会被加入到_ready
列表中
- 由上面的逻辑也可知,
- 从
_ready
列表中依次取出所有handle
,调用_run
方法运行
通过这种机制,事件循环就能持续不断地运行任务。
由上述_run_once
的定义也可知,在select
事件列表一步会出现IOCP
的身影,这是因为BaseProactorEventLoop
的selector
就是proactor
,实际传入的就是IOCP
实例,因此最终就是调用了IOCP
实例的select
方法。也是只有在这一步,才会去处理一些IO操作。
所以问题来了,针对IO操作,asyncio
是如何进行调度的呢?我们首先看IocpProactor.select
的实现:
# windows_events.py class IocpProactor: def select(self, timeout=None): if not self._results: self._poll(timeout) tmp = self._results self._results = [] return tmp def _poll(self, timeout=None): if timeout is None: ms = INFINITE elif timeout < 0: raise ValueError("negative timeout") else: ms = math.ceil(timeout * 1e3) if ms >= INFINITE: raise ValueError("timeout too big") while True: status = _overlapped.GetQueuedCompletionStatus(self._iocp, ms) if status is None: break ms = 0 err, transferred, key, address = status try: f, ov, obj, callback = self._cache.pop(address) except KeyError: if self._loop.get_debug(): self._loop.call_exception_handler({ 'message': ('GetQueuedCompletionStatus() returned an ' 'unexpected event'), 'status': ('err=%s transferred=%s key=%#x address=%#x' % (err, transferred, key, address)), }) if key not in (0, _overlapped.INVALID_HANDLE_VALUE): _winapi.CloseHandle(key) continue if obj in self._stopped_serving: f.cancel() elif not f.done(): try: value = callback(transferred, key, ov) except OSError as e: f.set_exception(e) self._results.append(f) else: f.set_result(value) self._results.append(f) # Remove unregistered futures for ov in self._unregistered: self._cache.pop(ov.address, None) self._unregistered.clear()
在IocpProactor._poll
中,会调用GetQueuedCompletionStatus
去查询完成端口的结果。直到有结果出现,才会根据结果中缓存的address
数据pop
出缓存的回调并且执行。
我们通过剖析一个IO操作的例子,来观察其中具体的奥秘:
from multiprocessing import Process import asyncio import time HOST, PORT = '127.0.0.1', 31077 async def _svr_handler(reader: asyncio.StreamReader, writer: asyncio.StreamWriter): data = await reader.read(1024) msg = data.decode() print(f'[Server] recv: {msg}') msg_back = ''.join([msg[i] for i in range(len(msg) - 1, 0, -1)]) print(f'[Server] send: {msg_back}') writer.write(msg_back.encode()) await writer.drain() writer.close() async def _svr_task(): svr = await asyncio.start_server(_svr_handler, host=HOST, port=PORT) async with svr: await svr.serve_forever() def _svr(): asyncio.run(_svr_task()) async def _test_cli(msg: str): reader, writer = await asyncio.open_connection(HOST, PORT) print(f'[Client] send: {msg}') writer.write(msg.encode()) await writer.drain() data = await reader.read(1024) print(f'[Client] recv: {data.decode()}') writer.close() await writer.wait_closed() def test_cli(): p = Process(target=_svr, daemon=True) p.start() time.sleep(0.5) _msg = 'helloworld' asyncio.run(_test_cli(_msg)) p.kill() if __name__ == '__main__': test_cli()
这是一个很简单的echo server
的实现,client
发送给server
信息,server
返回信息的reverse
。我们以client
的写操作writer.write
为例,看下IO事件是如何在事件循环里被处理的。
首先,open_connection
函数创建了对特定host
、port
的连接,并返回连接流的reader
跟writer
。
async def open_connection(host=None, port=None, *, limit=_DEFAULT_LIMIT, **kwds): loop = events.get_running_loop() reader = StreamReader(limit=limit, loop=loop) protocol = StreamReaderProtocol(reader, loop=loop) transport, _ = await loop.create_connection( lambda: protocol, host, port, **kwds) writer = StreamWriter(transport, protocol, reader, loop) return reader, writer
针对reader
,首先会初始化一个StreamReader
实例,再用StreamReaderProtocol
对reader
做进一步的封装。
针对writer
,首先会通过loop
的create_connection
方法,针对本次连接创建transport
实例,相当于一个通信管道的封装。transport
实例会与先前创建的StreamReaderProtocol
实例进行绑定。然后,再将创建的transport
实例和writer
绑定。
在ProactorEventLoop
中,会这样创建transport
实例:
# proactor_events.py class BaseProactorEventLoop(base_events.BaseEventLoop): return _ProactorSocketTransport(self, sock, protocol, waiter, extra, server) class _ProactorSocketTransport(_ProactorReadPipeTransport, _ProactorBaseWritePipeTransport, transports.Transport): def __init__(self, loop, sock, protocol, waiter=None, extra=None, server=None): super().__init__(loop, sock, protocol, waiter, extra, server) base_events._set_nodelay(sock)
_ProactorSocketTransport
实例会同时对_ProactorReadPipeTransport
以及_ProactorBaseWritePipeTransport
的初始化,因此会提供对管道读写的功能。其继承链如下:
(<class 'asyncio.proactor_events._ProactorSocketTransport'>, <class 'asyncio.proactor_events._ProactorReadPipeTransport'>, <class 'asyncio.proactor_events._ProactorBaseWritePipeTransport'>, <class 'asyncio.proactor_events._ProactorBasePipeTransport'>, <class 'asyncio.transports._FlowControlMixin'>, <class 'asyncio.transports.Transport'>, <class 'asyncio.transports.ReadTransport'>, <class 'asyncio.transports.WriteTransport'>, <class 'asyncio.transports.BaseTransport'>, <class 'object'>)
之后,当客户端开始写操作,调用writer.write
时,实质是进行了以下操作:
# proactor_events.py class _ProactorBaseWritePipeTransport(_ProactorBasePipeTransport, transports.WriteTransport): def write(self, data): # 省略一些判断逻辑 # Observable states: # 1. IDLE: _write_fut and _buffer both None # 2. WRITING: _write_fut set; _buffer None # 3. BACKED UP: _write_fut set; _buffer a bytearray # We always copy the data, so the caller can't modify it # while we're still waiting for the I/O to happen. if self._write_fut is None: # IDLE -> WRITING assert self._buffer is None # Pass a copy, except if it's already immutable. self._loop_writing(data=bytes(data)) elif not self._buffer: # WRITING -> BACKED UP # Make a mutable copy which we can extend. self._buffer = bytearray(data) self._maybe_pause_protocol() else: # BACKED UP # Append to buffer (also copies). self._buffer.extend(data) self._maybe_pause_protocol() def _loop_writing(self, f=None, data=None): try: if f is not None and self._write_fut is None and self._closing: return assert f is self._write_fut self._write_fut = None self._pending_write = 0 if f: f.result() if data is None: data = self._buffer self._buffer = None if not data: if self._closing: self._loop.call_soon(self._call_connection_lost, None) if self._eof_written: self._sock.shutdown(socket.SHUT_WR) self._maybe_resume_protocol() else: self._write_fut = self._loop._proactor.send(self._sock, data) if not self._write_fut.done(): assert self._pending_write == 0 self._pending_write = len(data) self._write_fut.add_done_callback(self._loop_writing) self._maybe_pause_protocol() else: self._write_fut.add_done_callback(self._loop_writing) if self._empty_waiter is not None and self._write_fut is None: self._empty_waiter.set_result(None) except ConnectionResetError as exc: self._force_close(exc) except OSError as exc: self._fatal_error(exc, 'Fatal write error on pipe transport')
第一次write
时,write_future
以及buffer
为空,因此触发了_loop_writing
逻辑。在_loop_writing
中,调用了self._loop._proactor.send(self._sock, data)
生成了一个写操作的future
。而_proactor
,也就是在ProactorEventLoop
里的IocpProactor
实例了。
# windows_events.py class IocpProactor: def send(self, conn, buf, flags=0): self._register_with_iocp(conn) ov = _overlapped.Overlapped(NULL) if isinstance(conn, socket.socket): ov.WSASend(conn.fileno(), buf, flags) else: ov.WriteFile(conn.fileno(), buf) def finish_send(trans, key, ov): try: return ov.getresult() except OSError as exc: if exc.winerror in (_overlapped.ERROR_NETNAME_DELETED, _overlapped.ERROR_OPERATION_ABORTED): raise ConnectionResetError(*exc.args) else: raise return self._register(ov, conn, finish_send) def _register_with_iocp(self, obj): if obj not in self._registered: self._registered.add(obj) _overlapped.CreateIoCompletionPort(obj.fileno(), self._iocp, 0, 0) def _register(self, ov, obj, callback): self._check_closed() f = _OverlappedFuture(ov, loop=self._loop) if f._source_traceback: del f._source_traceback[-1] if not ov.pending: try: value = callback(None, None, ov) except OSError as e: f.set_exception(e) else: f.set_result(value) self._cache[ov.address] = (f, ov, obj, callback) return f
在send
方法中,做了如下操作:
- 通过
CreateIoCompletionPort
注册socket
到完成端口 - 创建一个
Overlapped
实例,通过WSASend
发送数据到socket
- 创建一个关联
Overlapped
实例的future
,并且判断Overlapped
实例如果不在pending
状态就直接执行回调。之后,缓存这个future
实例到_cache
中。
在先前已经提到,事件循环执行时,IocpProactor
实例会调用_poll
方法,其中会采用GetQueuedCompletionStatus
查询IO操作完成结果。如果发现有IO操作完成,就会从操作中提取ov.address
并在_cache
中pop
出回调然后执行。这样通过IOCP
模型加上事件循环(事件循环实质就是IOCP
里头的worker
),就把writer.write
的操作从开始到完成的步骤给串起来了。
之后就是await writer.drain
,实质是做了如下操作:
# streams.py class StreamWriter: async def drain(self): await self._protocol._drain_helper() class FlowControlMixin(protocols.Protocol): # 这个会被StreamReaderProtocol继承 async def _drain_helper(self): if self._connection_lost: raise ConnectionResetError('Connection lost') if not self._paused: return waiter = self._drain_waiter assert waiter is None or waiter.cancelled() waiter = self._loop.create_future() self._drain_waiter = waiter await waiter
writer.drain
实质上是await
了StreamReaderProtocol
实例的_drain_helper
协程,其中做了一些前置检查,然后依据当前事件循环设置了一个_drain_waiter
的future
实例,并await
。为什么要这么做呢?
首先,我们可以观察得知,在_run_once
的逻辑中,如果_ready
队列有任务,或者是有_scheduled
里头的定时任务,那么之后IocpProactor._poll
里头的GetQueuedCompletionStatus
就会有timeout
,否则GetQueuedCompletionStatus
对应的timeout
就是INFINITE
,会一直阻塞直到有IO事件完成。有兴趣的同学可以创建一个协程任务,里头create_future
之后await
下,一试便知。
然后,回到_ProactorBaseWritePipeTransport
的_loop_writing
方法。_write_fut
被创建后,会直接添加_loop_writing
为自己的完成回调。当IocpProactor
实例由GetQueuedCompletionStatus
获得一个完成事件之后,会取出来执行ov.getresult()
(在send
方法的finish_send
里头)来获取结果,这个结果就会被放到_write_fut
作为其最终的返回结果。此时_write_fut
由于完成了,因此会调用自己的回调_loop_writing
,但这个时候因为buffer
里没有数据了,所以就会走到_maybe_resume_protocol
# transports.py class _FlowControlMixin(Transport): def _maybe_resume_protocol(self): if (self._protocol_paused and self.get_write_buffer_size() <= self._low_water): self._protocol_paused = False try: self._protocol.resume_writing() except (SystemExit, KeyboardInterrupt): raise except BaseException as exc: self._loop.call_exception_handler({ 'message': 'protocol.resume_writing() failed', 'exception': exc, 'transport': self, 'protocol': self._protocol, }) # streams.py class FlowControlMixin(protocols.Protocol): def resume_writing(self): assert self._paused self._paused = False if self._loop.get_debug(): logger.debug("%r resumes writing", self) waiter = self._drain_waiter if waiter is not None: self._drain_waiter = None if not waiter.done(): waiter.set_result(None)
在writer.drain
中,我们实际上是一直在await
这个_drain_waiter
。在调用_maybe_resume_protocol
之后,实际是走到了StreamReaderProtocol
实例的resume_writing
方法,在FlowControlMixin
类被定义。这个方法执行了两个操作:
- 将
_paused
状态置为False
_loop_writing
中,如果数据没发完,就会另外走到_maybe_pause_protocol
,会把这个状态置为true
。此时调用await writer.drain
,就正好会走到了await _drain_waiter
- 将
_drain_waiter
设置完成。这样,await writer.drain
就能完成了
客户端的写操作,在事件循环里就是通过如上复杂的方式调度的。总的来说,是如下的步骤:
- 用户调用
writer.write
将数据传进transport
的写buffer
transport
的_loop_writing
发现buffer
有数据,创建一个写future
- 通过
CreateIoCompletionPort
绑定socket
跟完成端口 - 通过
WSASend
发送数据 - 设置一个回调用来取发送数据的结果
- 取出来的结果给到写
future
- 写
future
预先设置_loop_writing
为完成回调,得到结果后执行下一轮_loop_writing
- 通过
- 用户调用
await writer.drain
- 写
future
在创建后,发现写future
没有到完成状态,先调用_maybe_pause_protocol
设置protocol
的_paused
为True
- 在
writer.drain
里判断protocol
为_paused
,重置_drain_waiter
为新的实例并await
- 写操作完成,触发写
future
的回调_loop_writing
。下一轮_loop_writing
发现没有数据发送,调用_maybe_resume_protocol
,设置protocol
的_paused
为False
,并设置_drain_waiter
为完成 _drain_waiter
完成,退出await writer.drain
- 写
针对读操作,以及其它的IO操作,有兴趣的小伙伴可以深入研究_
这篇关于【Hard Python】【第二章-异步IO】2、异步任务在事件循环中的执行的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-03用FastAPI掌握Python异步IO:轻松实现高并发网络请求处理
- 2025-01-02封装学习:Python面向对象编程基础教程
- 2024-12-28Python编程基础教程
- 2024-12-27Python编程入门指南
- 2024-12-27Python编程基础
- 2024-12-27Python编程基础教程
- 2024-12-27Python编程基础指南
- 2024-12-24Python编程入门指南
- 2024-12-24Python编程基础入门
- 2024-12-24Python编程基础:变量与数据类型