python 欧拉角,旋转矩阵,四元数之间转换
2022/3/3 11:15:26
本文主要是介绍python 欧拉角,旋转矩阵,四元数之间转换,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
import numpy as np import math from scipy.spatial.transform import Rotation as R Rq=[-0.71934025092983234, 1.876085535681999e-06, 3.274841213980097e-08, 0.69465790385533299] # 四元数到旋转矩阵 r = R.from_quat(Rq) Rm = r.as_matrix() # 0:array([ 1.00000000e+00, -2.74458557e-06, 2.55936079e-06]) # 1:array([-2.65358979e-06, -3.49007932e-02, 9.99390782e-01]) # 2:array([-2.65358979e-06, -9.99390782e-01, -3.49007932e-02]) # 符号相反的四元数, 仍表示同一个旋转 Rq1= [0.71934025092983234, -1.876085535681999e-06, -3.274841213980097e-08, -0.69465790385533299] # 四元数到旋转矩阵 r1 = R.from_quat(Rq1) Rm1 = r1.as_matrix() # 0:array([ 1.00000000e+00, -2.74458557e-06, 2.55936079e-06]) # 1:array([-2.65358979e-06, -3.49007932e-02, 9.99390782e-01]) # 2:array([-2.65358979e-06, -9.99390782e-01, -3.49007932e-02]) # 四元数到欧拉角 euler0 = r.as_euler('xyz', degrees=True) # ([-9.20000743e+01, 1.52039496e-04, -1.52039496e-04]) euler3 = r.as_euler('xzy', degrees=True) #([-9.20000743e+01, -1.52039496e-04, 1.52039496e-04]) euler1 = r.as_euler('zxy', degrees=True) #([-179.99564367, -87.99992566, 179.99579836]) euler2 = r.as_euler('zyx', degrees=True) #([ 1.57253169e-04, 1.46640571e-04, -9.20000743e+01]) euler4 = r.as_euler('yxz', degrees=True) #([179.99564367, -87.99992566, 179.99549428]) euler5 = r.as_euler('yzx', degrees=True) #([ 1.46640571e-04, 1.57253169e-04, -9.20000743e+01]) # 旋转矩阵到四元数 r3 = R.from_matrix(Rm) qua = r3.as_quat() #[0.7193402509298323, -1.8760855356819988e-06, -3.2748412139801076e-08, -0.694657903855333] #与原始相反,但等价 # 旋转矩阵到欧拉角 euler_1 = r3.as_euler('zxy', degrees=True) #([-179.99564367, -87.99992566, 179.99579836]) # 欧拉角到旋转矩阵 r4 = R.from_euler('zxy', [-179.99564367, -87.99992566, 179.99579836], degrees=True) rm = r4.as_matrix() # 0:array([ 1.00000000e+00, -2.74452529e-06, 2.55936075e-06]) # 1:array([-2.65358765e-06, -3.49007933e-02, 9.99390782e-01]) # 2:array([-2.65352955e-06, -9.99390782e-01, -3.49007933e-02]) # 欧拉角到四元数 qua1 = r4.as_quat() #([-7.19340251e-01, 1.87606384e-06, 3.27274889e-08, 6.94657904e-01]) #----测试-------------------------------------------------------------------- theta=[-116, 0. , -105] r6 = R.from_euler('xyz', theta, degrees=True) rm = r6.as_matrix() # 0:array([-0.25881905, -0.42343401, 0.86816838]) # 1:array([-0.96592583, 0.1134588 , -0.23262502]) # 2:array([ 0. , -0.89879405, -0.43837115]) qua3 = r6.as_quat() #array([-0.52720286, 0.68706415, -0.39667667, 0.30438071]) print(qua3)
这篇关于python 欧拉角,旋转矩阵,四元数之间转换的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-14获取参数学习:Python编程入门教程
- 2024-11-14Python编程基础入门
- 2024-11-14Python编程入门指南
- 2024-11-13Python基础教程
- 2024-11-12Python编程基础指南
- 2024-11-12Python基础编程教程
- 2024-11-08Python编程基础与实践示例
- 2024-11-07Python编程基础指南
- 2024-11-06Python编程基础入门指南
- 2024-11-06怎么使用python 计算两个GPS的距离功能-icode9专业技术文章分享