petite-vue-源码剖析-v-for重新渲染工作原理

2022/3/7 20:15:33

本文主要是介绍petite-vue-源码剖析-v-for重新渲染工作原理,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

在《petite-vue源码剖析-v-if和v-for的工作原理》我们了解到v-for在静态视图中的工作原理,而这里我们将深入了解在更新渲染时v-for是如何运作的。

逐行解析

// 文件 ./src/directives/for.ts

/* [\s\S]*表示识别空格字符和非空格字符若干个,默认为贪婪模式,即 `(item, index) in value` 就会匹配整个字符串。
 * 修改为[\s\S]*?则为懒惰模式,即`(item, index) in value`只会匹配`(item, index)`
 */
const forAliasRE = /([\s\S]*?)\s+(?:in)\s+([\s\S]*?)/
// 用于移除`(item, index)`中的`(`和`)`
const stripParentRE= /^\(|\)$/g
// 用于匹配`item, index`中的`, index`,那么就可以抽取出value和index来独立处理
const forIteratorRE = /,([^,\}\]]*)(?:,([^,\}\]]*))?$/

type KeyToIndexMap = Map<any, number>

// 为便于理解,我们假设只接受`v-for="val in values"`的形式,并且所有入参都是有效的,对入参有效性、解构等代码进行了删减
export const _for = (el: Element, exp: string, ctx: Context) => {
  // 通过正则表达式抽取表达式字符串中`in`两侧的子表达式字符串
  const inMatch = exp.match(forAliasRE)

  // 保存下一轮遍历解析的模板节点
  const nextNode = el.nextSibling

  // 插入锚点,并将带`v-for`的元素从DOM树移除
  const parent = el.parentElement!
  const anchor = new Text('')
  parent.insertBefore(anchor, el)
  parent.removeChild(el)

  const sourceExp = inMatch[2].trim() // 获取`(item, index) in value`中`value`
  let valueExp = inMatch[1].trim().replace(stripParentRE, '').trim() // 获取`(item, index) in value`中`item, index`
  let indexExp: string | undefined

  let keyAttr = 'key'
  let keyExp = 
    el.getAttribute(keyAttr) ||
    el.getAttribute(keyAttr = ':key') ||
    el.getAttribute(keyAttr = 'v-bind:key')
  if (keyExp) {
    el.removeAttribute(keyExp)
    // 将表达式序列化,如`value`序列化为`"value"`,这样就不会参与后面的表达式运算
    if (keyAttr === 'key') keyExp = JSON.stringify(keyExp)
  }

  let match
  if (match = valueExp.match(forIteratorRE)) {
    valueExp = valueExp.replace(forIteratorRE, '').trim() // 获取`item, index`中的item
    indexExp = match[1].trim()  // 获取`item, index`中的index
  }

  let mounted = false // false表示首次渲染,true表示重新渲染
  let blocks: Block[]
  let childCtxs: Context[]
  let keyToIndexMap: KeyToIndexMap // 用于记录key和索引的关系,当发生重新渲染时则复用元素

  const createChildContexts = (source: unknown): [Context[], KeyToIndexMap] => {
    const map: KeyToIndexMap = new Map()
    const ctxs: Context[] = []

    if (isArray(source)) {
      for (let i = 0; i < source.length; i++) {
        ctxs.push(createChildContext(map, source[i], i))
      }
    }  

    return [ctxs, map]
  }

  // 以集合元素为基础创建独立的作用域
  const createChildContext = (
    map: KeyToIndexMap,
    value: any, // the item of collection
    index: number // the index of item of collection
  ): Context => {
    const data: any = {}
    data[valueExp] = value
    indexExp && (data[indexExp] = index)
    // 为每个子元素创建独立的作用域
    const childCtx = createScopedContext(ctx, data)
    // key表达式在对应子元素的作用域下运算
    const key = keyExp ? evaluate(childCtx.scope, keyExp) : index
    map.set(key, index)
    childCtx.key = key

    return childCtx
  }

  // 为每个子元素创建块对象
  const mountBlock = (ctx: Conext, ref: Node) => {
    const block = new Block(el, ctx)
    block.key = ctx.key
    block.insert(parent, ref)
    return block
  }

  ctx.effect(() => {
    const source = evaluate(ctx.scope, sourceExp) // 运算出`(item, index) in items`中items的真实值
    const prevKeyToIndexMap = keyToIndexMap
    // 生成新的作用域,并计算`key`,`:key`或`v-bind:key`
    ;[childCtxs, keyToIndexMap] = createChildContexts(source)
    if (!mounted) {
      // 为每个子元素创建块对象,解析子元素的子孙元素后插入DOM树
      blocks = childCtxs.map(s => mountBlock(s, anchor))
      mounted = true
    }
    else {
      // 更新渲染逻辑!!
      // 根据key移除更新后不存在的元素
      for (let i = 0; i < blocks.length; i++) {
        if (!keyToIndexMap.has(blocks[i].key)) {
          blocks[i].remove()
        }
      }

      const nextBlocks: Block[] = []
      let i = childCtxs.length
      let nextBlock: Block | undefined
      let prevMovedBlock: Block | undefined
      while (i--) {
        const childCtx = childCtxs[i]
        const oldIndex = prevKeyToIndexMap.get(childCtx.key)
        let block
        if (oldIndex == null) {
          // 旧视图中没有该元素,因此创建一个新的块对象
          block = mountBlock(childCtx, newBlock ? newBlock.el : anchor)
        }
        else {
          // 旧视图中有该元素,元素复用
          block = blocks[oldIndex]
          // 更新作用域,由于元素下的`:value`,`{{value}}`等都会跟踪scope对应属性的变化,因此这里只需要更新作用域上的属性,即可触发子元素的更新渲染
          Object.assign(block.ctx.scope, childCtx.scope)
          if (oldIndex != i) {
            // 元素在新旧视图中的位置不同,需要移动
            if (
              blocks[oldIndex + 1] !== nextBlock ||
              prevMoveBlock === nextBlock
            ) {
              prevMovedBlock = block
              // anchor作为同级子元素的末尾
              block.insert(parent, nextBlock ? nextBlock.el : anchor)
            }
          }
        }
        nextBlocks.unshift(nextBlock = block)
      }
      blocks = nextBlocks
    }
  })

  return nextNode
}

难点突破

上述代码最难理解就是通过key复用元素那一段了

const nextBlocks: Block[] = []
let i = childCtxs.length
let nextBlock: Block | undefined
let prevMovedBlock: Block | undefined
while (i--) {
  const childCtx = childCtxs[i]
  const oldIndex = prevKeyToIndexMap.get(childCtx.key)
  let block
  if (oldIndex == null) {
    // 旧视图中没有该元素,因此创建一个新的块对象
    block = mountBlock(childCtx, newBlock ? newBlock.el : anchor)
  }
  else {
    // 旧视图中有该元素,元素复用
    block = blocks[oldIndex]
    // 更新作用域,由于元素下的`:value`,`{{value}}`等都会跟踪scope对应属性的变化,因此这里只需要更新作用域上的属性,即可触发子元素的更新渲染
    Object.assign(block.ctx.scope, childCtx.scope)
    if (oldIndex != i) {
      // 元素在新旧视图中的位置不同,需要移动
      if (
        /* blocks[oldIndex + 1] !== nextBlock 用于对重复键减少没必要的移动(如旧视图为1224,新视图为1242)
         * prevMoveBlock === nextBlock 用于处理如旧视图为123,新视图为312时,blocks[oldIndex + 1] === nextBlock导致无法执行元素移动操作
         */
        blocks[oldIndex + 1] !== nextBlock || 
        prevMoveBlock === nextBlock
      ) {
        prevMovedBlock = block
        // anchor作为同级子元素的末尾
        block.insert(parent, nextBlock ? nextBlock.el : anchor)
      }
    }
  }
  nextBlocks.unshift(nextBlock = block)
}

我们可以通过示例通过人肉单步调试理解

示例1

旧视图(已渲染): 1,2,3
新视图(待渲染): 3,2,1

  1. 循环第一轮

    childCtx.key = 1
    i = 2
    oldIndex = 0
    nextBlock = null
    prevMovedBlock = null
    

    prevMoveBlock === nextBlock
    于是将旧视图的block移动到最后,视图(已渲染): 2,3,1

  2. 循环第二轮

    childCtx.key = 2
    i = 1
    oldIndex = 1
    

    更新作用域

  3. 循环第三轮

    childCtx.key = 3
    i = 0
    oldIndex = 2
    nextBlock = block(.key=2)
    prevMovedBlock = block(.key=1)
    

    于是将旧视图的block移动到nextBlock前,视图(已渲染): 3,2,1

示例2 - 存在重复键

旧视图(已渲染): 1,2,2,4
新视图(待渲染): 1,2,4,2

此时prevKeyToIndexMap.get(2)返回2,而位于索引为1的2的信息被后者覆盖了。

  1. 循环第一轮

    childCtx.key = 2
    i = 3
    oldIndex = 2
    nextBlock = null
    prevMovedBlock = null
    

    于是将旧视图的block移动到最后,视图(已渲染): 1,2,4,2

  2. 循环第二轮

    childCtx.key = 4
    i = 2
    oldIndex = 3
    nextBlock = block(.key=2)
    prevMovedBlock = block(.key=2)
    

    于是将旧视图的block移动到nextBlock前,视图(已渲染): 1,2,4,2

  3. 循环第三轮

    childCtx.key = 2
    i = 1
    oldIndex = 2
    nextBlock = block(.key=4)
    prevMovedBlock = block(.key=4)
    

    由于blocks[oldIndex+1] === nextBlock,因此不用移动元素

  4. 循环第四轮

childCtx.key = 1
i = 0
oldIndex = 0

由于i === oldIndex,因此不用移动元素

后续

和DOM节点增删相关的操作我们已经了解得差不多了,后面我们一起阅读关于事件绑定、属性和v-modal等指令的源码吧!



这篇关于petite-vue-源码剖析-v-for重新渲染工作原理的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程