Quadratic Formula
2022/3/28 6:25:50
本文主要是介绍Quadratic Formula,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
Quadratic Formula:
The quadratic equation is as follows:
$ax^2+bx+c=0$
The quadratic formula tells us that the solutions to this equation is
$x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}$
So let's apply it to some problem.
Let's start off with something that we could have factored just to verify that it's giving us the same answer.
Example 1:
$x^2+4x-21=0$
$a=1, b=4, c=-21$
$x = \frac{-4\pm\sqrt{4^2-4\cdot1\cdot(-21)}}{2\cdot1}$
$x=\frac{-4\pm\sqrt{16+84}}{2}$
$x=\frac{-4\pm\sqrt{100}}{2}$
$x=\frac{-4\pm10}{2}$
$x=-2\pm5$
So: $x=3$ or $x=-7$
Sothe quadratic formula seems to have given us an answer for this. You can verify just by substituting back in that these do work.
$(x+7)\cdot(x-3)=0$
$x+7=0$ or $x-3=0$
$x=-7$ or $x=3$
Example 2:(no real solutions)
$3x^2+6x+10=0$ $a=3, b=6, c=10$ $x=\frac{-6\pm\sqrt{6^2-4\cdot3\cdot10}}{2\cdot3}$ $x=\frac{-6\pm\sqrt{36-120}}{6}$ $x=\frac{-6\pm\sqrt{-84}}{6}$ It jus gives us a square root of a negative number. It means this will have no real solutions.Example 3:(not so obvious to factor)
$-3x^2+12x+1=0$ $a=-3, b=12, c=1$ $x=\frac{-12\pm\sqrt{12^2-4\cdot(-3)\cdot1}}{2\cdot(-3)}$ $x=\frac{-12\pm\sqrt{144+12}}{-6}$ $x=\frac{-12\pm\sqrt{156}}{-6}$ $\because156=2\cdot78=2\cdot2\cdot39$ $\therefore\sqrt{156}=\sqrt{2\cdot2\cdot39}=\sqrt{2\cdot2}\cdot\sqrt{39}=2\sqrt{39}$ $x=\frac{-12\pm2\sqrt{39}}{-6}$ $x=\frac{-6\pm\sqrt{39}}{-3}$ $x=\frac{-6}{-3}\pm\frac{\sqrt{39}}{-3}$ $x=2\pm\frac{\sqrt{39}}{-3}$ $x=2\pm\frac{\sqrt{39}}{3}$Proof of the quadratic formula:
The quadratic equation is as following:$ax^2+bx+c=0$ $(a>0)$
Dividing everything by a and you got :
$x^2+\frac{b}{a}x+\frac{c}{a}=0$
$x^2+\frac{b}{a}x=-\frac{c}{a}$
Let's complete the square, just take $\frac12$ of coefficient on the x term and square it as following:
$x^2+\frac{b}{a}x+(\frac{b}{2a})^2=-\frac{c}{a}+(\frac{b}{2a})^2$
$(x+\frac{b}{2a})^2=-\frac{c}{a}+(\frac{b}{2a})^2$
$(x+\frac{b}{2a})^2=-\frac{c}{a}+\frac{b^2}{4a^2}$
$(x+\frac{b}{2a})^2=\frac{b^2}{4a^2}-\frac{c}{a}$
$(x+\frac{b}{2a})^2=\frac{b^2}{4a^2}-\frac{4ac}{4a^2}$
$(x+\frac{b}{2a})^2=\frac{b^2 - 4ac}{4a^2}$
$x+\frac{b}{2a}=\pm\sqrt\frac{b^2 - 4ac}{4a^2}$
$x+\frac{b}{2a}=\pm\frac{\sqrt{b^2 - 4ac}}{2a}$
$x=-\frac{b}{2a}\pm\frac{\sqrt{b^2 - 4ac}}{2a}$
$x=\frac{-b}{2a}\pm\frac{\sqrt{b^2 - 4ac}}{2a}$
$x=\frac{{-b}\pm{\sqrt{b^2 - 4ac}}}{2a}$
References: The quadratic formula Proof of the quadratic formula这篇关于Quadratic Formula的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-15在使用平台私钥进行解密时提示 "私钥解密失败" 错误信息是什么原因?-icode9专业技术文章分享
- 2024-11-15Layui框架有哪些方式引入?-icode9专业技术文章分享
- 2024-11-15Layui框架中有哪些减少对全局环境的污染方法?-icode9专业技术文章分享
- 2024-11-15laydate怎么关闭自动的日期格式校验功能?-icode9专业技术文章分享
- 2024-11-15laydate怎么取消初始日期校验?-icode9专业技术文章分享
- 2024-11-15SendGrid 的邮件发送时,怎么设置回复邮箱?-icode9专业技术文章分享
- 2024-11-15使用 SendGrid API 发送邮件后获取到唯一的请求 ID?-icode9专业技术文章分享
- 2024-11-15mailgun 发送邮件 tags标签最多有多少个?-icode9专业技术文章分享
- 2024-11-15mailgun 发送邮件 怎么批量发送给多个人?-icode9专业技术文章分享
- 2024-11-15如何搭建web开发环境并实现 web项目在浏览器中访问?-icode9专业技术文章分享