PYTHON中的CONCURRENT.FUTURES模块

2022/4/16 22:12:31

本文主要是介绍PYTHON中的CONCURRENT.FUTURES模块,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

一 : 概述

  concurrent.futures模块提供了高度封装的异步调用接口

  ThreadPoolExecutor:线程池,提供异步调用

  ProcessPoolExecutor: 进程池,提供异步调用

  Both implement the same interface, which is defined by the abstract Executor class.

二 : 基本方法

  submit(fn, *args, **kwargs) 异步提交任务

  map(func, *iterables, timeout=None, chunksize=1) 取代for循环submit的操作

  shutdown(wait=True) 相当于进程池的pool.close()+pool.join()操作, wait=True,等待池内所有任务执行完毕回收完资源后才继续 , wait=False,立即返回,并不会等待池内的任务执行完毕 , 但不管wait参数为何值,整个程序都会等到所有任务执行完毕 , submit和map必须在shutdown之前.

  result(timeout=None) 取得结果

  add_done_callback(fn) 添加回调函数 

 1 #介绍
 2 The ProcessPoolExecutor class is an Executor subclass that uses a pool of processes to execute calls asynchronously. ProcessPoolExecutor uses the multiprocessing module, which allows it to side-step the Global Interpreter Lock but also means that only picklable objects can be executed and returned.
 3 
 4 class concurrent.futures.ProcessPoolExecutor(max_workers=None, mp_context=None)
 5 An Executor subclass that executes calls asynchronously using a pool of at most max_workers processes. If max_workers is None or not given, it will default to the number of processors on the machine. If max_workers is lower or equal to 0, then a ValueError will be raised.
 6 
 7 
 8 #用法
 9 from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
10 
11 import os,time,random
12 def task(n):
13     print('%s is runing' %os.getpid())
14     time.sleep(random.randint(1,3))
15     return n**2
16 
17 if __name__ == '__main__':
18 
19     executor=ProcessPoolExecutor(max_workers=3)
20 
21     futures=[]
22     for i in range(11):
23         future=executor.submit(task,i)
24         futures.append(future)
25     executor.shutdown(True)
26     print('+++>')
27     for future in futures:
28         print(future.result())
29 
30 ProcessPoolExecutor
#介绍
ThreadPoolExecutor is an Executor subclass that uses a pool of threads to execute calls asynchronously.
class concurrent.futures.ThreadPoolExecutor(max_workers=None, thread_name_prefix='')
An Executor subclass that uses a pool of at most max_workers threads to execute calls asynchronously.

Changed in version 3.5: If max_workers is None or not given, it will default to the number of processors on the machine, multiplied by 5, assuming that ThreadPoolExecutor is often used to overlap I/O instead of CPU work and the number of workers should be higher than the number of workers for ProcessPoolExecutor.

New in version 3.6: The thread_name_prefix argument was added to allow users to control the threading.Thread names for worker threads created by the pool for easier debugging.

#用法
与ProcessPoolExecutor相同

ThreadPoolExecutor
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor

import os,time,random
def task(n):
    print('%s is runing' %os.getpid())
    time.sleep(random.randint(1,3))
    return n**2

if __name__ == '__main__':

    executor=ThreadPoolExecutor(max_workers=3)

    # for i in range(11):
    #     future=executor.submit(task,i)

    executor.map(task,range(1,12)) #map取代了for+submit

map的用法
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
from multiprocessing import Pool
import requests
import json
import os

def get_page(url):
    print('<进程%s> get %s' %(os.getpid(),url))
    respone=requests.get(url)
    if respone.status_code == 200:
        return {'url':url,'text':respone.text}

def parse_page(res):
    res=res.result()
    print('<进程%s> parse %s' %(os.getpid(),res['url']))
    parse_res='url:<%s> size:[%s]\n' %(res['url'],len(res['text']))
    with open('db.txt','a') as f:
        f.write(parse_res)


if __name__ == '__main__':
    urls=[
        'https://www.baidu.com',
        'https://www.python.org',
        'https://www.openstack.org',
        'https://help.github.com/',
        'http://www.sina.com.cn/'
    ]

    # p=Pool(3)
    # for url in urls:
    #     p.apply_async(get_page,args=(url,),callback=pasrse_page)
    # p.close()
    # p.join()

    p=ProcessPoolExecutor(3)
    for url in urls:
        p.submit(get_page,url).add_done_callback(parse_page) #parse_page拿到的是一个future对象obj,需要用obj.result()拿到结果

回调函数

转载至:https://www.cnblogs.com/DoingBe/p/9545066.html



这篇关于PYTHON中的CONCURRENT.FUTURES模块的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程