implement of Deep_learning Code
2022/4/18 6:13:15
本文主要是介绍implement of Deep_learning Code,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
Line_Model
import torch import torch.nn as nn import math import random import numpy as np # 计算线性回归模型 梯度 def Cal_SGD_Linear(x, pred, label, lr, k, bias=0): g = 0 for (idx, item) in enumerate(pred): g += (item - label[idx]) * x[idx] # 梯度 即loss关于模型参数的导数在当前参数 的导数值 g = (2 * g) / len(x) print(k - lr * g) return {'k': k - lr * g, 'bias': 0 if bias == 0 else bias - lr * g} def Cal_MSE(pred, label): loss = 0 for (idx, item) in enumerate(pred): loss += math.pow(item - label[idx], 2) # print(loss / len(pred)) # MSE 均方误差 # print(math.sqrt(loss / len(pred))) # RMSE 均方根误差 def gen_line_data(len_data): x = torch.linspace(10, 110, len_data) x = torch.unsqueeze(x, dim=1) y = 2 * x + torch.rand(x.size()) return {'x': x, 'y': y} class LineRegressionNet(nn.Module): def __init__(self) -> object: super().__init__() self.liner = nn.Linear(1, 1, bias=False) def forward(self, x): out = self.liner(x) return out class line_model(): def __init__(self, lr, epoches): self.lr = lr self.epoches = epoches self.init_model() def init_model(self): self.model = LineRegressionNet() self.optimiser = torch.optim.SGD(self.model.parameters(), lr=self.lr) self.loss_fn = torch.nn.MSELoss() def train_model(self , data , model_save_path="model.ck"): x = data['x'] y = data['y'] model = self.model for th in range(self.epoches): random.Random(th).shuffle(x) random.Random(th).shuffle(y) model.zero_grad() outputs = model(x) loss = self.loss_fn(outputs , y ) loss.backward() self.optimiser.step() self.model_save_path = model_save_path torch.save(model.state_dict() , model_save_path ) def test_model(self , data): x = data['x'] y = data['y'] self.model.load_state_dict(torch.load(self.model_save_path)) pred = self.model(x) print(x , pred) train_data = gen_line_data(10) test_data = gen_line_data(5) learning_rate = 0.0001 liner_model = line_model(learning_rate , 100) liner_model.train_model(train_data) liner_model.test_model(test_data) ''' loss_function = torch.nn.MSELoss() optimizer = torch.optim.Adam(liner_model.parameters(), lr=learning_rate) optimizer = torch.optim.Adagrad(liner_model.parameters(), lr=learning_rate) optimizer = torch.optim.SGD(liner_model.parameters(), lr=learning_rate) # 随机梯度下降 x = data['x'] y = data['y'] for i in range(10): optimizer.zero_grad() # 清空上一次梯度 outputs = liner_model(x) # Cal_MSE(outputs, y) loss = loss_function(outputs, y) # 前向传播 pp = liner_model.state_dict() print('liner.weight', pp['liner.weight']) Cal_SGD_Linear(x, outputs, y, learning_rate, pp['liner.weight'][0]) loss.backward() # 反向传播 optimizer.step() # 优化器参数更新 pp = liner_model.state_dict() # test_data = torch.unsqueeze(torch.linspace(100, 200, 10) , dim=1) # print(test_data, liner_model(test_data))'''
CNN_Model
import torch import torch.nn as nn import numpy as np def gen_line_data(len_data): x = torch.linspace(0, 100, len_data) x = torch.unsqueeze(x, dim=1) y = 2 * x + torch.rand(x.size()) return {'x': x, 'y': y} class CnnNet(nn.Module): def __init__(self): self.layer1 = nn.Sequential( nn.Conv2d(1, 16 , kernel_size=5 , stride=1,padding=2), nn.BatchNorm2d(16), nn.ReLU(), nn.MaxPool2d(kernel_size=2,stride=2) ) self.fc = nn.Linear(16 , 10) def forward(self, x): out = self.layer1(x) out = self.fc(out) return out data = gen_line_data(10) liner_model = CnnNet() learning_rate = 0.02 loss_function = torch.nn.MSELoss() optimizer = torch.optim.SGD(liner_model.parameters(), lr=learning_rate) x = data['x'] y = data['y'] # 前向传递 outputs = liner_model(x) loss = loss_function(outputs, y) # 反向传播和参数更新 optimizer.zero_grad() # 清空上一次梯度 loss.backward() # 反向传播 optimizer.step() # 优化器参数更新 test_data = torch.unsqueeze(torch.linspace(100, 200, 10), dim=1) print(test_data, liner_model(test_data))
这篇关于implement of Deep_learning Code的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-09CMS内容管理系统是什么?如何选择适合你的平台?
- 2025-01-08CCPM如何缩短项目周期并降低风险?
- 2025-01-08Omnivore 替代品 Readeck 安装与使用教程
- 2025-01-07Cursor 收费太贵?3分钟教你接入超低价 DeepSeek-V3,代码质量逼近 Claude 3.5
- 2025-01-06PingCAP 连续两年入选 Gartner 云数据库管理系统魔力象限“荣誉提及”
- 2025-01-05Easysearch 可搜索快照功能,看这篇就够了
- 2025-01-04BOT+EPC模式在基础设施项目中的应用与优势
- 2025-01-03用LangChain构建会检索和搜索的智能聊天机器人指南
- 2025-01-03图像文字理解,OCR、大模型还是多模态模型?PalliGema2在QLoRA技术上的微调与应用
- 2025-01-03混合搜索:用LanceDB实现语义和关键词结合的搜索技术(应用于实际项目)